Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design of incident angle-independent color filter based on subwavelength two-dimensional gratings

Hong Liang Yang Chen-Ying Shen Wei-Dong Ye Hui Zhang Yue-Guang Liu Xu

Design of incident angle-independent color filter based on subwavelength two-dimensional gratings

Hong Liang, Yang Chen-Ying, Shen Wei-Dong, Ye Hui, Zhang Yue-Guang, Liu Xu
PDF
Get Citation
  • A novel design of reflective color filters based on a two-dimensional subwavelength grating structure is proposed, which exhibits an incident angle independent property with unpolarized incident light in the visible range. By using rigorous coupled-wave analysis method, the effects of the grating period, the groove depth and the size of the structure on the reflectance spectrum are investigated in detail. The structural parameters of the gratings are optimized, and a color filter with high angular tolerance is achieved. Simulation result shows that the maximal reflectance is 56% at 424 nm with a bandwidth of 45 nm, and that the grating can almost keep its reflectance, bandwidth and the peak position at the incident angle up to about 60° under unpolarized incident light. The peak position of the color filter can be tuned from 400 nm to 520 nm by changing structural parameters of the gratings, and keep its incident angle-independent property.
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2012AA040401).
    [1]

    Magnusson R, Wang S S 1992 Appl. Phys. Lett. 61 1022

    [2]

    Ma J Y, Liu S J, Wei Z Y, Xu C, Jin Y X, Zhao Y A, Shao J D, Fan Z X 2008 Acta Phys. Sin. 57 827 (in Chinese) [麻健勇, 刘世杰, 魏朝阳, 许程, 晋云霞, 赵元安, 邵建达, 范正修 2008 物理学报 57 827]

    [3]

    Chen Q, Cumming D R S 2010 Opt. Exp. 18 14056

    [4]

    Zhao H J, Yang S L, Zhang D, Liang K Y, Cheng Z F, Shi D P 2009 Acta Phys. Sin. 58 6236 (in Chinese) [赵华君, 杨守良, 张东, 梁康有, 程正富, 石东平 2009 物理学报 58 6236]

    [5]

    Kanamori Y, Shimono M, Hane K 2006 IEEE Photon. Technol. Lett. 18 2126

    [6]

    Li C G, Gao Y H, Xu X S 2012 Chin. Phys. Lett. 29 034202

    [7]

    Lemarchand F, Sentenac A, Giovannini H 1998 Opt. Lett. 23 1149

    [8]

    Yoon Y T, Lee H S, Lee S S, Kim S H, Park J D, Lee K D 2008 Opt. Exp. 16 2374

    [9]

    Lee H S, Yoon Y T, Lee S S, Kim S H, Lee K D 2007 Opt. Exp. 15 15457

    [10]

    Ye Y, Zhou Y, Zhang H, Chen L S 2011 Appl. Opt. 50 1356

    [11]

    Ye Y, Zhang H, Zhou Y, Chen L S 2010 Opt. Commun. 283 613

    [12]

    Cheong B H, Prudnikov O N, Cho E, Kim H S, Yu J, Cho Y S, Choi H Y, Shin S T 2009 Appl. Phys. Lett. 94 213104

    [13]

    Cho E H, Kim H S, Cheong B H, Prudnikov O, Xianyua W, Sohn J S, Ma D J, Choi H Y, Park N C, Park Y P 2009 Opt. Exp. 17 8621

    [14]

    Moharam M G, Gaylord T K 1981 J. Opt. Soc. Am. 71 811

    [15]

    Palik E D 1985 Handbook of Optical Constants of Solids (Vol. 1) (New York: Academic) p563

    [16]

    Moharam M G, Grann E B, Pommet D A, Gaylord T K 1995 J. Opt. Soc. Am. 12 1068

    [17]

    Fu Z P, Lin F, Zhu X 2011 Acta Phys. Sin. 60 114213 (in Chinese) [傅正平, 林峰, 朱星 2011 物理学报 60 114213]

    [18]

    Hessel A, Oliner A A 1965 Appl. Opt. 4 1275

  • [1]

    Magnusson R, Wang S S 1992 Appl. Phys. Lett. 61 1022

    [2]

    Ma J Y, Liu S J, Wei Z Y, Xu C, Jin Y X, Zhao Y A, Shao J D, Fan Z X 2008 Acta Phys. Sin. 57 827 (in Chinese) [麻健勇, 刘世杰, 魏朝阳, 许程, 晋云霞, 赵元安, 邵建达, 范正修 2008 物理学报 57 827]

    [3]

    Chen Q, Cumming D R S 2010 Opt. Exp. 18 14056

    [4]

    Zhao H J, Yang S L, Zhang D, Liang K Y, Cheng Z F, Shi D P 2009 Acta Phys. Sin. 58 6236 (in Chinese) [赵华君, 杨守良, 张东, 梁康有, 程正富, 石东平 2009 物理学报 58 6236]

    [5]

    Kanamori Y, Shimono M, Hane K 2006 IEEE Photon. Technol. Lett. 18 2126

    [6]

    Li C G, Gao Y H, Xu X S 2012 Chin. Phys. Lett. 29 034202

    [7]

    Lemarchand F, Sentenac A, Giovannini H 1998 Opt. Lett. 23 1149

    [8]

    Yoon Y T, Lee H S, Lee S S, Kim S H, Park J D, Lee K D 2008 Opt. Exp. 16 2374

    [9]

    Lee H S, Yoon Y T, Lee S S, Kim S H, Lee K D 2007 Opt. Exp. 15 15457

    [10]

    Ye Y, Zhou Y, Zhang H, Chen L S 2011 Appl. Opt. 50 1356

    [11]

    Ye Y, Zhang H, Zhou Y, Chen L S 2010 Opt. Commun. 283 613

    [12]

    Cheong B H, Prudnikov O N, Cho E, Kim H S, Yu J, Cho Y S, Choi H Y, Shin S T 2009 Appl. Phys. Lett. 94 213104

    [13]

    Cho E H, Kim H S, Cheong B H, Prudnikov O, Xianyua W, Sohn J S, Ma D J, Choi H Y, Park N C, Park Y P 2009 Opt. Exp. 17 8621

    [14]

    Moharam M G, Gaylord T K 1981 J. Opt. Soc. Am. 71 811

    [15]

    Palik E D 1985 Handbook of Optical Constants of Solids (Vol. 1) (New York: Academic) p563

    [16]

    Moharam M G, Grann E B, Pommet D A, Gaylord T K 1995 J. Opt. Soc. Am. 12 1068

    [17]

    Fu Z P, Lin F, Zhu X 2011 Acta Phys. Sin. 60 114213 (in Chinese) [傅正平, 林峰, 朱星 2011 物理学报 60 114213]

    [18]

    Hessel A, Oliner A A 1965 Appl. Opt. 4 1275

  • [1] Li Guo-Long, Li Jin. The light absorption enhancement in polymer solar cells with periodic nano-structures gratings. Acta Physica Sinica, 2012, 61(20): 207204. doi: 10.7498/aps.61.207204
    [2] Niu Qing-Chen, Gou Jun, Wang Jun, Jiang Ya-Dong. Absorption enhancement of terahertz wave in microbolometers by titanium disk array. Acta Physica Sinica, 2019, 68(20): 208501. doi: 10.7498/aps.68.20190902
    [3] Liu Tong-Jun, Xi Xiang, Ling Yong-Hong, Sun Ya-Li, Li Zhi-Wei, Huang Li-Rong. Polarization-insensitive and broad-angle gradient metasurface with high-efficiency anomalous reflection. Acta Physica Sinica, 2015, 64(23): 237802. doi: 10.7498/aps.64.237802
    [4] Hu Yang, Yang Hai-Liang, Sun Jian-Feng, Sun Jiang, Zhang Peng-Fei. A method of measuring the incidence angle of intense electron beam. Acta Physica Sinica, 2015, 64(24): 245203. doi: 10.7498/aps.64.245203
    [5] Weng Yong-Chao, Kuang Long-Yu, Gao Nan, Cao Lei-Feng, Zhu Xiao-Li, Wang Xiao-Hua, Xie Chang-Qing. Reflection type single-order diffraction grating. Acta Physica Sinica, 2012, 61(15): 154203. doi: 10.7498/aps.61.154203
    [6] Zhou Chuan-Hong, Wang Lei, Nei Ya, Wang Zhi-Heng. . Acta Physica Sinica, 2002, 51(1): 68-73. doi: 10.7498/aps.51.68
    [7] Kong Wei-Jin, Yun Mao-Jin, Sun Xin, Liu Jun-Hai, Fan Zheng-Xiu, Shao Jian-Da. Diffraction property of multi-layer dielectric gratings studied by rigorous coupled-wave analysis. Acta Physica Sinica, 2008, 57(8): 4904-4910. doi: 10.7498/aps.57.4904
    [8] Kong Wei-Jin, Wang Shu-Hao, Wei Shi-Jie, Yun Mao-Jin, Zhang Wen-Fei, Wang Xin-Jie, Zhang Meng-Meng. Diffraction property of broadband metal multi-layer dielectric gratings based on rigorous coupled-wave analysis. Acta Physica Sinica, 2011, 60(11): 114214. doi: 10.7498/aps.60.114214
    [9] Qu Shi-Liang, Liu Wen-Jun, Bai Bing, Zhou Chang-He, Dai En-Wen, Li Guo-Wei. Generating femtosecond double pulses using Dammann reflection gratings. Acta Physica Sinica, 2007, 56(6): 3292-3299. doi: 10.7498/aps.56.3292
    [10] Zhao Hua-Jun, Yang Shou-Liang, Zhang Dong, Liang Kang-You, Cheng Zheng-Fu, Shi Dong-Ping. Design of polarizing beam splitters based on subwavelength metal grating. Acta Physica Sinica, 2009, 58(9): 6236-6242. doi: 10.7498/aps.58.6236
  • Citation:
Metrics
  • Abstract views:  1049
  • PDF Downloads:  1607
  • Cited By: 0
Publishing process
  • Received Date:  13 July 2012
  • Accepted Date:  19 September 2012
  • Published Online:  20 March 2013

Design of incident angle-independent color filter based on subwavelength two-dimensional gratings

  • 1. Department of Optical Engineering, Zhejiang University, State Key Laboratory of Modern Optical Instrumentation, Hangzhou 310027, China
Fund Project:  Project supported by the National High Technology Research and Development Program of China (Grant No. 2012AA040401).

Abstract: A novel design of reflective color filters based on a two-dimensional subwavelength grating structure is proposed, which exhibits an incident angle independent property with unpolarized incident light in the visible range. By using rigorous coupled-wave analysis method, the effects of the grating period, the groove depth and the size of the structure on the reflectance spectrum are investigated in detail. The structural parameters of the gratings are optimized, and a color filter with high angular tolerance is achieved. Simulation result shows that the maximal reflectance is 56% at 424 nm with a bandwidth of 45 nm, and that the grating can almost keep its reflectance, bandwidth and the peak position at the incident angle up to about 60° under unpolarized incident light. The peak position of the color filter can be tuned from 400 nm to 520 nm by changing structural parameters of the gratings, and keep its incident angle-independent property.

Reference (18)

Catalog

    /

    返回文章
    返回