Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Generation of continuous-variable entanglement in a two-mode four-level single-atom driven by microwave

Song Ming-Yu Wu Yao-De

Generation of continuous-variable entanglement in a two-mode four-level single-atom driven by microwave

Song Ming-Yu, Wu Yao-De
PDF
Get Citation
  • In this paper, we discuss the generation and evolution of continuous-variable entanglement in a two-mode single-atom laser, where the atomic coherence is induced by two classical microwave fields, which drive the corresponding fine atomic transitions. The results show that the intensity of the microwave field can influence effectively the entanglement properties of the cavity field. In addition, our numerical results also show that the intensity and the period of entanglement between the two cavity modes as well as the total mean photon number of the cavity field can be increased synchronously by adjusting the corresponding frequency detuning.
    • Funds: Science and Technology Research Project Department of Education of the Hubei Province, China (Grant No. B20121209), the Middle-aged and Young Scientists Innovation Groups Project of Higher Education of Hubei Provice, China (Grant No. T201204), and the Key Project of Science and Technology Research Program of Education Department of Hubei Province, China (Grant No. D20121203).
    [1]

    Braunstein S L, Lock P V 2005 Rev. Mod. Phys. 77 513

    [2]

    Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)

    [3]

    Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895

    [4]

    Hu X Y, Gu Y, Gong Q H, Guo G C 2010 Chin. Phys. B 19 050305

    [5]

    Feng M 2002 Phys. Rev. A 66 054303

    [6]

    Zheng S B, Guo G C 2006 Phys. Rev. A 73 032329

    [7]

    Gong Z X 2007 J. Phys. B 40 1245

    [8]

    Wang H X, Yin W, Wang F W 2010 Acta Phys. Sin. 59 5241 (in Chinese) [王海霞, 殷雯, 王芳卫 2010 物理学报 59 5241]

    [9]

    Li G X, Yang Y P, Allaart K, Lenstra D 2004 Phys. Rev. A 69 014301

    [10]

    Sun L H, Li G X, Zbigniew F 2011 New J. Phys. 13 093019

    [11]

    Josse V, Dantan A, Bramati A, Pinard M, Giacobino E 2004 Phys. Rev. Lett. 92 123601

    [12]

    Xu Y, Fan W, Chen B, Li Z X 2011 Acta Phys. Sin. 60 0603051 (in Chinese) [徐岩, 樊炜, 陈兵, 李照鑫 2011 物理学报 60 0603051]

    [13]

    Scully M O, Zubairy M S 1987 Phys. Rev. A 35 752

    [14]

    Simon R 2000 Phys. Rev. Lett. 84 2726

    [15]

    Duan L M, Giedke G, Cirac J I, Zoller P 2000 Phys. Rev. Lett. 84 2722

    [16]

    Xiong H, Scully M O, Zubairy M S 2005 Phys. Rev. Lett. 94 023601

    [17]

    Tan H T, Zhu S Y, Zubairy M S 2005 Phys. Rev. A 72 022305

    [18]

    Tesfa S 2006 Phys. Rev. A 74 043816

    [19]

    Tesfa S 2012 Chin. Phys. B 21 014204

    [20]

    Wang Z J, Zhang K, Fan C Y 2010 Chin. Phys. B 19 110311

    [21]

    Kiffner M, Zubairy M S, Evers J, Keitel C H 2007 Phys. Rev. A 75 033816

    [22]

    Kuang M H, Ma S J, Liu D M, Wang S J 2009 Chin. Phys. B 18 1065

    [23]

    Lu D M 2011 Acta Phys. Sin. 60 1203031 (in Chinese) [卢道明2011物理学报 60 1203031]

    [24]

    Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press) 409

    [25]

    Wu Y 2005 Phys. Rev. A 71 053820

  • [1]

    Braunstein S L, Lock P V 2005 Rev. Mod. Phys. 77 513

    [2]

    Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)

    [3]

    Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895

    [4]

    Hu X Y, Gu Y, Gong Q H, Guo G C 2010 Chin. Phys. B 19 050305

    [5]

    Feng M 2002 Phys. Rev. A 66 054303

    [6]

    Zheng S B, Guo G C 2006 Phys. Rev. A 73 032329

    [7]

    Gong Z X 2007 J. Phys. B 40 1245

    [8]

    Wang H X, Yin W, Wang F W 2010 Acta Phys. Sin. 59 5241 (in Chinese) [王海霞, 殷雯, 王芳卫 2010 物理学报 59 5241]

    [9]

    Li G X, Yang Y P, Allaart K, Lenstra D 2004 Phys. Rev. A 69 014301

    [10]

    Sun L H, Li G X, Zbigniew F 2011 New J. Phys. 13 093019

    [11]

    Josse V, Dantan A, Bramati A, Pinard M, Giacobino E 2004 Phys. Rev. Lett. 92 123601

    [12]

    Xu Y, Fan W, Chen B, Li Z X 2011 Acta Phys. Sin. 60 0603051 (in Chinese) [徐岩, 樊炜, 陈兵, 李照鑫 2011 物理学报 60 0603051]

    [13]

    Scully M O, Zubairy M S 1987 Phys. Rev. A 35 752

    [14]

    Simon R 2000 Phys. Rev. Lett. 84 2726

    [15]

    Duan L M, Giedke G, Cirac J I, Zoller P 2000 Phys. Rev. Lett. 84 2722

    [16]

    Xiong H, Scully M O, Zubairy M S 2005 Phys. Rev. Lett. 94 023601

    [17]

    Tan H T, Zhu S Y, Zubairy M S 2005 Phys. Rev. A 72 022305

    [18]

    Tesfa S 2006 Phys. Rev. A 74 043816

    [19]

    Tesfa S 2012 Chin. Phys. B 21 014204

    [20]

    Wang Z J, Zhang K, Fan C Y 2010 Chin. Phys. B 19 110311

    [21]

    Kiffner M, Zubairy M S, Evers J, Keitel C H 2007 Phys. Rev. A 75 033816

    [22]

    Kuang M H, Ma S J, Liu D M, Wang S J 2009 Chin. Phys. B 18 1065

    [23]

    Lu D M 2011 Acta Phys. Sin. 60 1203031 (in Chinese) [卢道明2011物理学报 60 1203031]

    [24]

    Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press) 409

    [25]

    Wu Y 2005 Phys. Rev. A 71 053820

  • [1] Chen Ai-Xi, Chen De-Hai, Wang Zhi-Ping. Optical bistability and multistability in ladder-type four-level atomic coherence medium. Acta Physica Sinica, 2009, 58(8): 5450-5454. doi: 10.7498/aps.58.5450
    [2] Zhou Yan-Wei, Lin Qiang, Wang Yu-Zhu, Ye Cun-Yun. Control of population and atomic coherence by adiabatic rapid passage. Acta Physica Sinica, 2005, 54(6): 2799-2803. doi: 10.7498/aps.54.2799
    [3] Ba Nuo, Wang Lei, Zhang Yan. Tunable three photonic band-gaps coherently induced in one-dimensional cold atomic lattices. Acta Physica Sinica, 2014, 63(3): 034209. doi: 10.7498/aps.63.034209
    [4] Ba Nuo, Wang Lei, Wang Hai-Hua, Li Dong-Fei, Wang Dan, Yan Li-Yun. Optical precursors via spontaneously generated coherence. Acta Physica Sinica, 2016, 65(10): 104201. doi: 10.7498/aps.65.104201
    [5] Wang Jian, Wang Fei, Hu Xiang-Ming, Li Xiao-Qi. Microwave control of optical bistability and multistability in the presence of antirotating wave coupling. Acta Physica Sinica, 2008, 57(4): 2236-2241. doi: 10.7498/aps.57.2236
    [6] Wang Li, Hu Xiang-Ming. Coupling field linewidth: inhibiting electromagnetically induced absorption. Acta Physica Sinica, 2004, 53(8): 2551-2555. doi: 10.7498/aps.53.2551
    [7] Luo Jun-Wen, Wu De-Wei, Li Xiang, Zhu Hao-Nan, Wei Tian-Li. Continuous variable polarization entanglement in microwave domain. Acta Physica Sinica, 2019, 68(6): 064204. doi: 10.7498/aps.68.20181911
    [8] Li Juan, Li Jia-Ming, Cai Chun-Xiao, Sun Heng-Xin, Liu Kui, Gao Jiang-Rui. Enhancement of continuous-variable hyperentanglement by optimizing pump mode. Acta Physica Sinica, 2019, 68(3): 034204. doi: 10.7498/aps.68.20181625
    [9] Su Jia-Ni, Deng Wen-Wu, Li Gao-Xiang. Coherent control of the Goos-Hnchen shift in four-level atomic medium. Acta Physica Sinica, 2012, 61(14): 144210. doi: 10.7498/aps.61.144210
    [10] Zhang Lei, Ge Yan, Zhang Xiang-Yang. Study on atomic localization of Λ-type quasi-four level atoms based on absorption with quantum coherent control. Acta Physica Sinica, 2015, 64(13): 134204. doi: 10.7498/aps.64.134204
  • Citation:
Metrics
  • Abstract views:  562
  • PDF Downloads:  376
  • Cited By: 0
Publishing process
  • Received Date:  28 July 2012
  • Accepted Date:  16 October 2012
  • Published Online:  20 March 2013

Generation of continuous-variable entanglement in a two-mode four-level single-atom driven by microwave

  • 1. College of Physical Science and Technology, Yangtze University, Jingzhou, 430023, China
Fund Project:  Science and Technology Research Project Department of Education of the Hubei Province, China (Grant No. B20121209), the Middle-aged and Young Scientists Innovation Groups Project of Higher Education of Hubei Provice, China (Grant No. T201204), and the Key Project of Science and Technology Research Program of Education Department of Hubei Province, China (Grant No. D20121203).

Abstract: In this paper, we discuss the generation and evolution of continuous-variable entanglement in a two-mode single-atom laser, where the atomic coherence is induced by two classical microwave fields, which drive the corresponding fine atomic transitions. The results show that the intensity of the microwave field can influence effectively the entanglement properties of the cavity field. In addition, our numerical results also show that the intensity and the period of entanglement between the two cavity modes as well as the total mean photon number of the cavity field can be increased synchronously by adjusting the corresponding frequency detuning.

Reference (25)

Catalog

    /

    返回文章
    返回