Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Analysis of underwater sound absorption of visco-elastic composites coating containing micro-spherical glass shell

Yu Li-Gang Li Zhao-Hui Wang Ren-Qian Ma Li-Li

Analysis of underwater sound absorption of visco-elastic composites coating containing micro-spherical glass shell

Yu Li-Gang, Li Zhao-Hui, Wang Ren-Qian, Ma Li-Li
PDF
Get Citation
  • Underwater sound absorption coating is significant to the stealth of a submarine, so it attracts a lot of attention. Underwater sound absorption of visco-elastic composites coating containing micro-spherical glass shell was investigated theoretically. The mechanical and acoustic properties of the composites in response to the volume of the micro-spherical glass shell were analyzed by the effective parameters method. Sound absorption of a single layer composites coating containing different volume of micro-spherical glass shell was calculated by the one-dimensional model, in which sound propagates in multi-layer media. The calculated results show that the sound absorption at low frequencies can be promoted by increasing the volume of micro-spherical glass shell, but the sound absorption at high frequencies is depressed. The volume distribution of the micro-spherical glass shells across the thickness of the coating was optimized by the genetic algorithm. The optimal multi-layer structure can promote the sound absorption at low frequencies, and keep the sound absorption coefficients above a limited value (0.7) at high frequencies. The optimal multi-layer composite coating can work at high pressure since it does not contain hollow macro-structure. Its structure is simple, so the technique of its fabrication should not be complicated. The theoretical method achieved in this paper can be applied in the design of underwater sound absorption coating.
    [1]

    He Z Y, Wang M 1996 Appl. Acoust. 9 12 (in Chinese) [何祚镛, 王曼 1996 应用声学 9 12]

    [2]

    Ma L L, Wang R Q 2006 Tech. Acoust. 25 175 (in Chinese) [马黎黎, 王仁乾 2006 声学技术 25 175]

    [3]

    Ivansson S M, 2006 J. Acoust. Soc. Am. 119 3558

    [4]

    Zhao H G, Liu Y Z, Wen J H, Yu D L, Wen X S 2007 Phys. Lett. A 367 224

    [5]

    Chen H Y, Luo X D, Ma H R 2007 Phys. Rev. B 75 024306

    [6]

    Ivansson S M 2008 J. Acoust. Soc. Am. 124 1974

    [7]

    Zhao H G, Liu Y Y, Wen J H, Yu D L, Wen X S 2007 Acta Phys. Sin. 56 4700 (in Chinese) [赵宏刚, 刘耀宗, 温激鸿, 郁殿龙, 温熙森 2007 物理学报 56 470]

    [8]

    Jiang H, Zhang M L, Wang Y R, Hu Y P, Lan D, Wei B C 2009 Chin. Phys. Lett. 26 106202

    [9]

    Zhang J M, Chang W, Varadan V K, Varadan V V 2001 Smart Mater. Struct. 10 414

    [10]

    Philip B, Abraham J K, Varadan V K, Natarajan V, Jayakumari V G 2004 Smart Mater. Struct. 13 N99

    [11]

    Yu L G, Li Z H, Ma L L 2012 Acta Phys. Sin. 61 024301 (in Chinese) [于利刚, 李朝晖, 马黎黎 2012 物理学报 61 024301]

    [12]

    Wang X L 2007 J. Acoust. Soc. Am. 122 2626

    [13]

    Meyer E, Brendel K, Tamm K 1958 J. Acoust. Soc. Am. 30 1116

    [14]

    Gaunaurd G C, berall H 1978 J. Acoust. Soc. Am. 63 1699

    [15]

    Gaunaurd G C, berall H 1982 J. Acoust. Soc. Am. 71 282

    [16]

    Gaunaurd G C, Barlow J 1984 J. Acoust. Soc. Am. 75 23

    [17]

    Kerr F 1992 Int. J. Eng. Sci. 30 169

    [18]

    Cherkaoui M, Sabar H, Berveiller M 1994 J. Eng. Mater. Technol. 116 274

    [19]

    Baird A M, Kerr F H, Townend D J 1999 J. Acoust. Soc. Am. 105 1527

    [20]

    Haberman M R, Berthelot Y H, Jarzynski J 2002 J. Acoust. Soc. Am. 112 1937

    [21]

    Liang B, Zhu Z M, Cheng J C 2006 Chin. Phys. 15 412

    [22]

    Liang B, Zhu Z M, Cheng J C 2007 Chin. Phys. Lett. 24 1607

    [23]

    Liang B, Zhu Z M, Cheng J C 2007 Phys. Rev. E 75 016605

    [24]

    Qin B, Liang B, Zhu Z M, Cheng J C 2007 Acta Acoust. 32 110 (in Chinese) [秦波, 梁彬, 朱哲民, 程建春 2007 声学学报 32 110]

    [25]

    Folds D L, Loggins C D 1977 J. Acoust. Soc. Am. 62 1022

    [26]

    Tomas E Gomez A A 2004 IEEE Trans. Ultrason. Ferroelectr. and Frequency Control 51 624

    [27]

    Stephen P K, Gordon H, Tomas E, Gomez A A 2004 IEEE Trans. Ultrason. Ferroelectr. and Frequency Control 51 1314

  • [1]

    He Z Y, Wang M 1996 Appl. Acoust. 9 12 (in Chinese) [何祚镛, 王曼 1996 应用声学 9 12]

    [2]

    Ma L L, Wang R Q 2006 Tech. Acoust. 25 175 (in Chinese) [马黎黎, 王仁乾 2006 声学技术 25 175]

    [3]

    Ivansson S M, 2006 J. Acoust. Soc. Am. 119 3558

    [4]

    Zhao H G, Liu Y Z, Wen J H, Yu D L, Wen X S 2007 Phys. Lett. A 367 224

    [5]

    Chen H Y, Luo X D, Ma H R 2007 Phys. Rev. B 75 024306

    [6]

    Ivansson S M 2008 J. Acoust. Soc. Am. 124 1974

    [7]

    Zhao H G, Liu Y Y, Wen J H, Yu D L, Wen X S 2007 Acta Phys. Sin. 56 4700 (in Chinese) [赵宏刚, 刘耀宗, 温激鸿, 郁殿龙, 温熙森 2007 物理学报 56 470]

    [8]

    Jiang H, Zhang M L, Wang Y R, Hu Y P, Lan D, Wei B C 2009 Chin. Phys. Lett. 26 106202

    [9]

    Zhang J M, Chang W, Varadan V K, Varadan V V 2001 Smart Mater. Struct. 10 414

    [10]

    Philip B, Abraham J K, Varadan V K, Natarajan V, Jayakumari V G 2004 Smart Mater. Struct. 13 N99

    [11]

    Yu L G, Li Z H, Ma L L 2012 Acta Phys. Sin. 61 024301 (in Chinese) [于利刚, 李朝晖, 马黎黎 2012 物理学报 61 024301]

    [12]

    Wang X L 2007 J. Acoust. Soc. Am. 122 2626

    [13]

    Meyer E, Brendel K, Tamm K 1958 J. Acoust. Soc. Am. 30 1116

    [14]

    Gaunaurd G C, berall H 1978 J. Acoust. Soc. Am. 63 1699

    [15]

    Gaunaurd G C, berall H 1982 J. Acoust. Soc. Am. 71 282

    [16]

    Gaunaurd G C, Barlow J 1984 J. Acoust. Soc. Am. 75 23

    [17]

    Kerr F 1992 Int. J. Eng. Sci. 30 169

    [18]

    Cherkaoui M, Sabar H, Berveiller M 1994 J. Eng. Mater. Technol. 116 274

    [19]

    Baird A M, Kerr F H, Townend D J 1999 J. Acoust. Soc. Am. 105 1527

    [20]

    Haberman M R, Berthelot Y H, Jarzynski J 2002 J. Acoust. Soc. Am. 112 1937

    [21]

    Liang B, Zhu Z M, Cheng J C 2006 Chin. Phys. 15 412

    [22]

    Liang B, Zhu Z M, Cheng J C 2007 Chin. Phys. Lett. 24 1607

    [23]

    Liang B, Zhu Z M, Cheng J C 2007 Phys. Rev. E 75 016605

    [24]

    Qin B, Liang B, Zhu Z M, Cheng J C 2007 Acta Acoust. 32 110 (in Chinese) [秦波, 梁彬, 朱哲民, 程建春 2007 声学学报 32 110]

    [25]

    Folds D L, Loggins C D 1977 J. Acoust. Soc. Am. 62 1022

    [26]

    Tomas E Gomez A A 2004 IEEE Trans. Ultrason. Ferroelectr. and Frequency Control 51 624

    [27]

    Stephen P K, Gordon H, Tomas E, Gomez A A 2004 IEEE Trans. Ultrason. Ferroelectr. and Frequency Control 51 1314

  • [1] Chen Zhi-Tao, Yu Tong-Jun, Zhang Guo-Yi, Cheng Xing-Hua, Tang Long-Gu, Gong Min, Shi Rui-Ying. A genetic algorithm research on Lorentz oscillator model in infrared spectra of GaMnN. Acta Physica Sinica, 2008, 57(9): 5875-5880. doi: 10.7498/aps.57.5875
    [2] Chang Hong-Wei, Ma Hua, Zhang Jie-Qiu, Zhang Zhi-Yuan, Xu Zhuo, Wang Jia-Fu, Qu Shao-Bo. Optimization of metamaterial based weighted real-coded genetic algorithm. Acta Physica Sinica, 2014, 63(8): 087804. doi: 10.7498/aps.63.087804
    [3] Wei Jian-Jun, Yan Jian-Cheng, He Zhi-Bing, Yang Zhi-Lin, Chen Zhi-Mei, Tang Yong-Jian. Thermal stability of glow discharge polymer coatings on glass microspheres. Acta Physica Sinica, 2010, 59(11): 8005-8009. doi: 10.7498/aps.59.8005
    [4] Wang Jian-Bo, Lu Jun. Double screen frequency selective surface structure optimized by genetic algorithm. Acta Physica Sinica, 2011, 60(5): 057304. doi: 10.7498/aps.60.057304
    [5] Wu Zhong-Qiang, Ao Dun, Liu Kun. Fuzzy control of a chaotic system based on genetic algorithm. Acta Physica Sinica, 2004, 53(1): 21-24. doi: 10.7498/aps.53.21
    [6] Wang Dong-Feng. Genetic algorithm optimization based proportional-integral-derivative controller for unified chaotic system. Acta Physica Sinica, 2005, 54(4): 1495-1499. doi: 10.7498/aps.54.1495
    [7] Gong Chun-Juan, Hu Xiong-Wei. Design of triangular lattice photonic crystals using genetic algorithms. Acta Physica Sinica, 2007, 56(2): 927-932. doi: 10.7498/aps.56.927
    [8] Lin Hai, Wu Chen-Xu. Evolution of strategies based on genetic algorithm in the iterated prisoner’s dilemma on complex networks. Acta Physica Sinica, 2007, 56(8): 4313-4318. doi: 10.7498/aps.56.4313
    [9] Zu Yun-Xiao, Zhou Jie. Cognitive radio resource allocation based on combined chaotic genetic algorithm. Acta Physica Sinica, 2011, 60(7): 079501. doi: 10.7498/aps.60.079501
    [10] He Ran, Huang Si-Xun, Zhou Chen-Teng, Jiang Zhu-Hui. Genetic algorithm with regularization method to retrieve ocean atmosphere duct. Acta Physica Sinica, 2012, 61(4): 049201. doi: 10.7498/aps.61.049201
  • Citation:
Metrics
  • Abstract views:  857
  • PDF Downloads:  855
  • Cited By: 0
Publishing process
  • Received Date:  28 June 2012
  • Accepted Date:  15 September 2012
  • Published Online:  20 March 2013

Analysis of underwater sound absorption of visco-elastic composites coating containing micro-spherical glass shell

  • 1. School of Electronic Engineering and Computer Science, Peking University, Beijing 100871, China

Abstract: Underwater sound absorption coating is significant to the stealth of a submarine, so it attracts a lot of attention. Underwater sound absorption of visco-elastic composites coating containing micro-spherical glass shell was investigated theoretically. The mechanical and acoustic properties of the composites in response to the volume of the micro-spherical glass shell were analyzed by the effective parameters method. Sound absorption of a single layer composites coating containing different volume of micro-spherical glass shell was calculated by the one-dimensional model, in which sound propagates in multi-layer media. The calculated results show that the sound absorption at low frequencies can be promoted by increasing the volume of micro-spherical glass shell, but the sound absorption at high frequencies is depressed. The volume distribution of the micro-spherical glass shells across the thickness of the coating was optimized by the genetic algorithm. The optimal multi-layer structure can promote the sound absorption at low frequencies, and keep the sound absorption coefficients above a limited value (0.7) at high frequencies. The optimal multi-layer composite coating can work at high pressure since it does not contain hollow macro-structure. Its structure is simple, so the technique of its fabrication should not be complicated. The theoretical method achieved in this paper can be applied in the design of underwater sound absorption coating.

Reference (27)

Catalog

    /

    返回文章
    返回