Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A numerical analysis of drop impact on solid surfaces by using smoothed particle hydrodynamics method

Su Tie-Xiong Ma Li-Qiang Liu Mou-Bin Chang Jian-Zhong

A numerical analysis of drop impact on solid surfaces by using smoothed particle hydrodynamics method

Su Tie-Xiong, Ma Li-Qiang, Liu Mou-Bin, Chang Jian-Zhong
PDF
Get Citation
  • In this paper, we present a numerical simulation of a single liquid drop impacting onto solid surface with smoothed particle hydrodynamics (SPH). SPH is a Lagrangian, meshfree particle method, and it is attractive in dealing with free surfaces, moving interfaces and deformable boundaries. The SPH model includes an improved approximation scheme with corrections to kernel gradient and density to improve computational accuracy. Riemann solver is adopted to solve equations of fluid motion. An new inter-particle interaction force is used for modeling the surface tension effects, and the modified SPH method is used to investigate liquid drop impacting onto solid surfaces. It is demonstrated that the inter-particle interaction force can effectively simulate the effect of surface tension. It can well describe the dynamic process of morphology evolution and the pressure field evolution with accurate and stable results. The spread factor increases with the increase of the initial Weber number. The numerical results are in good agreement with the theoretical and experimental results in the literature.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 50976108, 11172306).
    [1]

    Tuan T 2012 Phys. Rev. Lett. 108 036101

    [2]

    Thoroddsen S T, Takehara K 2012 J. Fluid. Mech. 706 560

    [3]

    Zhang M K, Chen S, Shang Z 2012 Acta Phys. Sin. 61 034701 (in Chinese) [张明焜, 陈硕, 尚智 2012 物理学报 61 034701]

    [4]

    Liu M B, Chang J Z 2011 Int. J. Comput. Meth. 8 637

    [5]

    Worthington A M 1876 Proc. R. Soc. Lond. 25 261

    [6]

    Roisman I V, Opfer L, Tropea C, Raessi M, Mostaghimi J, Chandra S 2008 Colloids Surfaces A 322 183

    [7]

    Qiang H F, Liu K, Chen F Z 2012 Acta Phys. Sin. 61 204701 (in Chinese) [强洪夫, 刘开, 陈福振 2012 物理学报 61 204701]

    [8]

    Bussmann M, Chandra S, Mostaghimi J 2000 Phys. Fluids 12 3121

    [9]

    Eggers J, Fontelos M A, Josserand C, Zaleski S 2010 Phys. Fluids 22 301

    [10]

    Ellis A S, Smith F T, White A H 2011 Q. J. Mech. Appl. Math. 64 107

    [11]

    Ma L Q, Chang J Z, Liu H T, Liu M B 2012 Acta Phys. Sin. 61 054701 (in Chinese) [马理强, 常建忠, 刘汉涛, 刘谋斌 2012 物理学报 61 054701]

    [12]

    Yang B H, Wang H, Zhu X, Ding Y D, Zhou J 2012 CIESC J. 10 3027 (in Chinese) [杨宝海, 王宏, 朱恂, 丁玉栋, 周劲 2012 化工学报 10 3027]

    [13]

    Sikalo S, Wilhelm H D, Roisman I V, Jakirlic S, Tropea C 2005 Phys. Fluids 17 062103

    [14]

    Liu M B, Liu G R, Zong Z, Lam K Y 2003 Comput. Fluids 32 305

    [15]

    Liu M B, Liu G R, Zong Z 2008 Int. J. Comput. Meth. 5 135

    [16]

    Liu M B, Liu G R 2010 Arxiv. Comput. Methods Engrg. 17 25

    [17]

    Liu M B, Chang J Z 2010 Acta Phys. Sin. 59 26

    [18]

    Liu M B, Liu G R, Lam K Y 2003 Electron. Model. 25 113

    [19]

    Liu M B, Liu G R, Lam K Y 2003 J. Comput. Appl. Math. 155 263

    [20]

    Liu M B, Liu G R, Lam K Y, Zong Z 2003 Comput. Mech. 30 106

    [21]

    Liu M B, Shao J R 2012 Sci. China E 42 1

    [22]

    Monaghan J J 1992 Annu. Rev. Astron. Astr. 30 543

    [23]

    Jiang T, Ouyang J, Zhao X K, Ren J L 2011 Acta Phys. Sin. 60 054701 (in Chinese) [蒋涛, 欧阳洁, 赵晓凯, 任金莲 2011 物理学报 60 054701]

    [24]

    Zhang S, Morita K, Fukuda K, Shirakawa N 2007 Int. J. Numer. Meth. Fl. 55 225

    [25]

    Liu M B, Liu G R 2005 Comput. Mech. 35 332

    [26]

    Rioboo R, Marengo M, Tropea C 2002 Exp. Fluids 33 112

  • [1]

    Tuan T 2012 Phys. Rev. Lett. 108 036101

    [2]

    Thoroddsen S T, Takehara K 2012 J. Fluid. Mech. 706 560

    [3]

    Zhang M K, Chen S, Shang Z 2012 Acta Phys. Sin. 61 034701 (in Chinese) [张明焜, 陈硕, 尚智 2012 物理学报 61 034701]

    [4]

    Liu M B, Chang J Z 2011 Int. J. Comput. Meth. 8 637

    [5]

    Worthington A M 1876 Proc. R. Soc. Lond. 25 261

    [6]

    Roisman I V, Opfer L, Tropea C, Raessi M, Mostaghimi J, Chandra S 2008 Colloids Surfaces A 322 183

    [7]

    Qiang H F, Liu K, Chen F Z 2012 Acta Phys. Sin. 61 204701 (in Chinese) [强洪夫, 刘开, 陈福振 2012 物理学报 61 204701]

    [8]

    Bussmann M, Chandra S, Mostaghimi J 2000 Phys. Fluids 12 3121

    [9]

    Eggers J, Fontelos M A, Josserand C, Zaleski S 2010 Phys. Fluids 22 301

    [10]

    Ellis A S, Smith F T, White A H 2011 Q. J. Mech. Appl. Math. 64 107

    [11]

    Ma L Q, Chang J Z, Liu H T, Liu M B 2012 Acta Phys. Sin. 61 054701 (in Chinese) [马理强, 常建忠, 刘汉涛, 刘谋斌 2012 物理学报 61 054701]

    [12]

    Yang B H, Wang H, Zhu X, Ding Y D, Zhou J 2012 CIESC J. 10 3027 (in Chinese) [杨宝海, 王宏, 朱恂, 丁玉栋, 周劲 2012 化工学报 10 3027]

    [13]

    Sikalo S, Wilhelm H D, Roisman I V, Jakirlic S, Tropea C 2005 Phys. Fluids 17 062103

    [14]

    Liu M B, Liu G R, Zong Z, Lam K Y 2003 Comput. Fluids 32 305

    [15]

    Liu M B, Liu G R, Zong Z 2008 Int. J. Comput. Meth. 5 135

    [16]

    Liu M B, Liu G R 2010 Arxiv. Comput. Methods Engrg. 17 25

    [17]

    Liu M B, Chang J Z 2010 Acta Phys. Sin. 59 26

    [18]

    Liu M B, Liu G R, Lam K Y 2003 Electron. Model. 25 113

    [19]

    Liu M B, Liu G R, Lam K Y 2003 J. Comput. Appl. Math. 155 263

    [20]

    Liu M B, Liu G R, Lam K Y, Zong Z 2003 Comput. Mech. 30 106

    [21]

    Liu M B, Shao J R 2012 Sci. China E 42 1

    [22]

    Monaghan J J 1992 Annu. Rev. Astron. Astr. 30 543

    [23]

    Jiang T, Ouyang J, Zhao X K, Ren J L 2011 Acta Phys. Sin. 60 054701 (in Chinese) [蒋涛, 欧阳洁, 赵晓凯, 任金莲 2011 物理学报 60 054701]

    [24]

    Zhang S, Morita K, Fukuda K, Shirakawa N 2007 Int. J. Numer. Meth. Fl. 55 225

    [25]

    Liu M B, Liu G R 2005 Comput. Mech. 35 332

    [26]

    Rioboo R, Marengo M, Tropea C 2002 Exp. Fluids 33 112

  • [1] Ma Li-Qiang, Chang Jian-Zhong, Liu Han-Tao, Liu Mou-Bin. Numerical simulation of droplet impact on liquid with smoothed particle hydrodynamics method. Acta Physica Sinica, 2012, 61(5): 054701. doi: 10.7498/aps.61.054701
    [2] Jiang Tao, Ouyang Jie, Zhao Xiao-Kai, Ren Jin-Lian. The deformation process of viscous liquid drop studied by using kernel gradient corrected SPH method. Acta Physica Sinica, 2011, 60(5): 054701. doi: 10.7498/aps.60.054701
    [3] Ma Li-Qiang, Su Tie-Xiong, Liu Han-Tao, Meng-Qing. Numerical simulation on oscillation of micro-drops by means of smoothed particle hydrodynamics. Acta Physica Sinica, 2015, 64(13): 134702. doi: 10.7498/aps.64.134702
    [4] Ma Li-Qiang, Liu Mou-Bin, Chang Jian-Zhong, Su Tie-Xiong, Liu Han-Tao. Numerical simulation of droplet impact onto liquid films with smoothed particle hydrodynamics. Acta Physica Sinica, 2012, 61(24): 244701. doi: 10.7498/aps.61.244701
    [5] Wang Xiao-Liang, Chen Shuo. Simulation of vapor-liquid coexistence using dissipative particle dynamics. Acta Physica Sinica, 2010, 59(10): 6778-6785. doi: 10.7498/aps.59.6778
    [6] Bai Ling, Li Da-Ming, Li Yan-Qing, Wang Zhi-Chao, Li Yang-Yang. Study on the droplet impact on hydrophobic surface in terms of van der Waals surface tension model. Acta Physica Sinica, 2015, 64(11): 114701. doi: 10.7498/aps.64.114701
    [7] Bi Fei-Fei, Guo Ya-Li, Shen Sheng-Qiang, Chen Jue-Xian, Li Yi-Qiao. Experimental study of spread characteristics of droplet impacting solid surface. Acta Physica Sinica, 2012, 61(18): 184702. doi: 10.7498/aps.61.184702
    [8] Lin Lin, Yuan Ru-Qiang, Zhang Xin-Xin, Wang Xiao-Dong. Spreading dynamics of liquid droplet on gradient micro-structured surfaces. Acta Physica Sinica, 2015, 64(15): 154705. doi: 10.7498/aps.64.154705
    [9] Ye Xue-Min, Zhang Xiang-Shan, Li Ming-Lan, Li Chun-Xi. Dynamics of evaporating drop on heated surfaces with different wettabilities. Acta Physica Sinica, 2018, 67(11): 114702. doi: 10.7498/aps.67.20180159
    [10] Jiang Tao, Lu Lin-Guang, Lu Wei-Gang. Numerical study of collision process between two equal diameter liquid micro-droplets using a modified smoothed particle hydrodynamics method. Acta Physica Sinica, 2013, 62(22): 224701. doi: 10.7498/aps.62.224701
  • Citation:
Metrics
  • Abstract views:  827
  • PDF Downloads:  839
  • Cited By: 0
Publishing process
  • Received Date:  06 August 2012
  • Accepted Date:  18 October 2012
  • Published Online:  20 March 2013

A numerical analysis of drop impact on solid surfaces by using smoothed particle hydrodynamics method

  • 1. School of Mechatronice Engineering, North University of China, Taiyuan 030051, China;
  • 2. Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 50976108, 11172306).

Abstract: In this paper, we present a numerical simulation of a single liquid drop impacting onto solid surface with smoothed particle hydrodynamics (SPH). SPH is a Lagrangian, meshfree particle method, and it is attractive in dealing with free surfaces, moving interfaces and deformable boundaries. The SPH model includes an improved approximation scheme with corrections to kernel gradient and density to improve computational accuracy. Riemann solver is adopted to solve equations of fluid motion. An new inter-particle interaction force is used for modeling the surface tension effects, and the modified SPH method is used to investigate liquid drop impacting onto solid surfaces. It is demonstrated that the inter-particle interaction force can effectively simulate the effect of surface tension. It can well describe the dynamic process of morphology evolution and the pressure field evolution with accurate and stable results. The spread factor increases with the increase of the initial Weber number. The numerical results are in good agreement with the theoretical and experimental results in the literature.

Reference (26)

Catalog

    /

    返回文章
    返回