Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental investigations on the propagation characteristics of internal solitary waves over a gentle slope

Du Hui Wei Gang Zhang Yuan-Ming Xu Xiao-Hui

Experimental investigations on the propagation characteristics of internal solitary waves over a gentle slope

Du Hui, Wei Gang, Zhang Yuan-Ming, Xu Xiao-Hui
PDF
Get Citation
  • In a stratified fluid tank, experiments on the propagating, shoaling and breaking of the internal solitary waves over a gentle slope similar to the topography in the northeast of the South China Sea are conducted. The qualitative analysis on the evolving characteristics of the internal solitary waves is accomplished by use of the dye-tracing technique, and their quantitative measurement is carried out by using the multi-channel conductivity-probe arrays. It is shown that due to the shoaling effect the internal solitary waves with large amplitude are restrained, but the waves with small amplitude are magnified. The shoaling effect will also lead to the decrease of the propagation velocity of the internal solitary waves. Further, the shoaling effect will bring about strong shear flow instability, and then makes the internal solitary wave broken. The breaking wave will result in the fission from one large amplitude wave into several small amplitude waves with the same polarity. By means of the Mile's stability theory, the instable happening-location of the internal solitary wave over the gentle slope can be described through the Richardson number. The experimental results accord well with the theoretical analyses.
    • Funds: Project supported by the National Science Foundation of China (Grant No. 11072267), the National High Technology Research and Development Program of China (Grant No. 2008AA09Z316), Pre-Research Foundation of PLA University of Science and Technology, China (Grant No. KYLYZL XY 1202).
    [1]

    Cai S Q, Xie J S, He J L 2012 Surv. Geophys. 33 927

    [2]

    Liu A K 1988 J. Geophys. Res. 93 12317

    [3]

    Holloway P E, Pelinovasky E, Talipova T 1999 J. Geophys. Res. 104 18333

    [4]

    Djordjevic Y D, L G Redekopp 1978 J. Phys. Oceanogr. 6 1016

    [5]

    Cai S Q, Xie J S 2010 J. Geophys. Res. 115 1

    [6]

    Meng J M, Zhang Z L 2001 J. Hydrodyn. 3 88

    [7]

    Su X B, Wei G, Dai S Q 2005 Appl. Math. Mech. 26 1143

    [8]

    Lombard P N, J J Riley 1996 Dyn. Atmos. Oceans 24 345

    [9]

    Garrett C 2001 J. Phys. Oceanogr. 31 962

    [10]

    Legg S, Aderoft A 2003 J. Phys. Oceanogr. 33 2224

    [11]

    Shrira V I, Voronov V V, Sazonov I A 2000 J. Fluid Mech. 425 187

    [12]

    Kao T W, Pan P S, Renouard D 1985 J. Fluid Mech. 195 19

    [13]

    Helfrich K R, Melvilie W K 1984 J. Fluid Mech. 149 305

    [14]

    Wallace B C, Wilkinson D L 1988 J. Fluid Mech. 191 419

    [15]

    Helfrich K R 1992 J. Fluid Mech. 243 133

    [16]

    Chen C Y, Hsu J R C, Chen H H, Kuo C F, Cheng M H 2007 Ocean Eng. 34 157

    [17]

    Fructus D, Carr M, Grue J, Jensen A, Davies P A 2009 J. Fluid Mech. 620 1

    [18]

    Wei G, Wu N, Xu X H, Su X B, You Y X 2011 Acta Phys. Sin 60 044704 (in Chinese) [魏岗, 吴宁, 徐小辉, 苏晓冰, 尤云祥 2011 物理学报 60 044704]

    [19]

    Wei G, Su X B, Yang J G, Wang Q H Chinese Patent 201010103635.6 [2012-02-01]

    [20]

    Whitham G B 1974 Linear and Nonlinear Waves (New York: John Wiely and Sons, Inc)

    [21]

    Fang X H, Du T 2004 Fundamental of Oceanic Internal Waves and Internal Waves in the China Seas (Qingdao: China Ocean University Press) p300 (in Chinese) [方欣华, 杜涛 2004 海洋内波基础和中国海内波(青岛: 中国海洋大学出版社)第300页]

    [22]

    Cai S Q, Gan Z J 1995 Tropic Oceanology 14 2229 (in Chinese) [蔡树群, 甘子钧 1995 热带海洋 14 2229]

    [23]

    Miles J W 1961 J. Fluid Mech. 10 496

    [24]

    Li Q 2008 Ph. D. Dissertation (Qingdao: China Ocean University) (in Chinese) [李群 2008 博士学位论文(青岛: 中国海洋大学)]

    [25]

    Miles J W 1963 J. Fluid Mech. 16 209

  • [1]

    Cai S Q, Xie J S, He J L 2012 Surv. Geophys. 33 927

    [2]

    Liu A K 1988 J. Geophys. Res. 93 12317

    [3]

    Holloway P E, Pelinovasky E, Talipova T 1999 J. Geophys. Res. 104 18333

    [4]

    Djordjevic Y D, L G Redekopp 1978 J. Phys. Oceanogr. 6 1016

    [5]

    Cai S Q, Xie J S 2010 J. Geophys. Res. 115 1

    [6]

    Meng J M, Zhang Z L 2001 J. Hydrodyn. 3 88

    [7]

    Su X B, Wei G, Dai S Q 2005 Appl. Math. Mech. 26 1143

    [8]

    Lombard P N, J J Riley 1996 Dyn. Atmos. Oceans 24 345

    [9]

    Garrett C 2001 J. Phys. Oceanogr. 31 962

    [10]

    Legg S, Aderoft A 2003 J. Phys. Oceanogr. 33 2224

    [11]

    Shrira V I, Voronov V V, Sazonov I A 2000 J. Fluid Mech. 425 187

    [12]

    Kao T W, Pan P S, Renouard D 1985 J. Fluid Mech. 195 19

    [13]

    Helfrich K R, Melvilie W K 1984 J. Fluid Mech. 149 305

    [14]

    Wallace B C, Wilkinson D L 1988 J. Fluid Mech. 191 419

    [15]

    Helfrich K R 1992 J. Fluid Mech. 243 133

    [16]

    Chen C Y, Hsu J R C, Chen H H, Kuo C F, Cheng M H 2007 Ocean Eng. 34 157

    [17]

    Fructus D, Carr M, Grue J, Jensen A, Davies P A 2009 J. Fluid Mech. 620 1

    [18]

    Wei G, Wu N, Xu X H, Su X B, You Y X 2011 Acta Phys. Sin 60 044704 (in Chinese) [魏岗, 吴宁, 徐小辉, 苏晓冰, 尤云祥 2011 物理学报 60 044704]

    [19]

    Wei G, Su X B, Yang J G, Wang Q H Chinese Patent 201010103635.6 [2012-02-01]

    [20]

    Whitham G B 1974 Linear and Nonlinear Waves (New York: John Wiely and Sons, Inc)

    [21]

    Fang X H, Du T 2004 Fundamental of Oceanic Internal Waves and Internal Waves in the China Seas (Qingdao: China Ocean University Press) p300 (in Chinese) [方欣华, 杜涛 2004 海洋内波基础和中国海内波(青岛: 中国海洋大学出版社)第300页]

    [22]

    Cai S Q, Gan Z J 1995 Tropic Oceanology 14 2229 (in Chinese) [蔡树群, 甘子钧 1995 热带海洋 14 2229]

    [23]

    Miles J W 1961 J. Fluid Mech. 10 496

    [24]

    Li Q 2008 Ph. D. Dissertation (Qingdao: China Ocean University) (in Chinese) [李群 2008 博士学位论文(青岛: 中国海洋大学)]

    [25]

    Miles J W 1963 J. Fluid Mech. 16 209

  • [1] Wei Gang, Wu Ning, Xu Xiao-Hui, Su Xiao-Bing, You Yun-Xiang. Experiments on the generation of internal wavesby a hemispheroid in a linearly stratified fluid. Acta Physica Sinica, 2011, 60(4): 044704. doi: 10.7498/aps.60.044704
    [2] Huang Wen-Hao, You Yun-Xiang, Wang Xu, Hu Tian-Qun. Wave-making experiments and theoretical models for internal solitary waves in a two-layer fluid of finite depth. Acta Physica Sinica, 2013, 62(8): 084705. doi: 10.7498/aps.62.084705
    [3] Zhang Heng, Duan Wen-Shan. The modulational instability of the solition wave in two-dimensional Bose-Einstein condensates. Acta Physica Sinica, 2013, 62(4): 044703. doi: 10.7498/aps.62.044703
    [4] Zhou Guo-Cheng, Cao Jin-Bin, Wei Xin-Hua, Li Liu-Yuan. Low-frequency electromagnetic instabilities in a collisionless current sheet:magnetohydrodynamic model. Acta Physica Sinica, 2005, 54(7): 3228-3235. doi: 10.7498/aps.54.3228
    [5] Wei Qi, E Wen-Ji. Thermodynamic analyses of dewetting instability in thin films. Acta Physica Sinica, 2012, 61(16): 160508. doi: 10.7498/aps.61.160508
    [6] Wang Peng, Xue Yun, Lou Zhi-Mei. Dynamic instability of super-long elastic rod in viscous fluid. Acta Physica Sinica, 2017, 66(9): 094501. doi: 10.7498/aps.66.094501
    [7] Chen Tao, Zhang Ting, Wang Guang-Chang, Zheng Zhi-Jian, Gu Yu-Qiu. Study of transport of hot electrons in solid targets using transition radiation. Acta Physica Sinica, 2007, 56(2): 982-987. doi: 10.7498/aps.56.982
    [8] Zhang Peng-Fei, Qiao Chun-Hong, Feng Xiao-Xing, Huang Tong, Li Nan, Fan Cheng-Yu, Wang Ying-Jian. Linearization theory of small scale thermal blooming effect in non-Kolmogorov turbulent atmosphere. Acta Physica Sinica, 2017, 66(24): 244210. doi: 10.7498/aps.66.244210
    [9] Liu Jun, Feng Qi-Jing, Zhou Hai-Bing. Simulation study of interface instability in metals driven by cylindrical implosion. Acta Physica Sinica, 2014, 63(15): 155201. doi: 10.7498/aps.63.155201
    [10] LU QUAN-KANG. ON ELECTROMAGNETIC INSTABILITIES OF PLASMA (II). Acta Physica Sinica, 1981, 30(2): 266-270. doi: 10.7498/aps.30.266
  • Citation:
Metrics
  • Abstract views:  593
  • PDF Downloads:  855
  • Cited By: 0
Publishing process
  • Received Date:  20 July 2012
  • Accepted Date:  20 September 2012
  • Published Online:  20 March 2013

Experimental investigations on the propagation characteristics of internal solitary waves over a gentle slope

  • 1. College of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing 211101, China
Fund Project:  Project supported by the National Science Foundation of China (Grant No. 11072267), the National High Technology Research and Development Program of China (Grant No. 2008AA09Z316), Pre-Research Foundation of PLA University of Science and Technology, China (Grant No. KYLYZL XY 1202).

Abstract: In a stratified fluid tank, experiments on the propagating, shoaling and breaking of the internal solitary waves over a gentle slope similar to the topography in the northeast of the South China Sea are conducted. The qualitative analysis on the evolving characteristics of the internal solitary waves is accomplished by use of the dye-tracing technique, and their quantitative measurement is carried out by using the multi-channel conductivity-probe arrays. It is shown that due to the shoaling effect the internal solitary waves with large amplitude are restrained, but the waves with small amplitude are magnified. The shoaling effect will also lead to the decrease of the propagation velocity of the internal solitary waves. Further, the shoaling effect will bring about strong shear flow instability, and then makes the internal solitary wave broken. The breaking wave will result in the fission from one large amplitude wave into several small amplitude waves with the same polarity. By means of the Mile's stability theory, the instable happening-location of the internal solitary wave over the gentle slope can be described through the Richardson number. The experimental results accord well with the theoretical analyses.

Reference (25)

Catalog

    /

    返回文章
    返回