Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Carrier transport characteristics in CdSe/CdS/Thioglycolic acid ligand quantum dots with a core-shell structure

Xue Zhen-Jie Li Kui-Ying Sun Zhen-Ping

Carrier transport characteristics in CdSe/CdS/Thioglycolic acid ligand quantum dots with a core-shell structure

Xue Zhen-Jie, Li Kui-Ying, Sun Zhen-Ping
PDF
Get Citation
  • In the present paper, we synthesize CdSe quantum dots (QDs) that are stabilized by thioglycolic acid according to the water-phase synthesis. The X-ray diffraction and HRTEM results confirm that the samples prepared each possess a sphalerite structure. The EDS and FT-IR spectra of the samples show that a core-shell structure is formed between the CdSe nanoparticles and the ligand. The fine band structures and the characteristics of the surface states in a connection with the structures are identified by the surface photovoltage (SPV) spectrum of the samples. Two SPV response peaks, located at 475 nm (2.61 eV) and 400 nm (3.1 eV), are closely related to the band-band transitions of the core-CdSe and the shell-CdS, respectively; the SPV response at 370 nm (3.35 eV) is correlated with the n → π* transition between the hydroxyl and sulfydryl (or hydroxyl). It is because of an obvious quantum size effect of the samples that both PL line broadens and SPV response intensity increases with the decrease of the grain size of the sample. The change trend of the surface photoacoustic signal intensity is contrary to that of the SPV response intensity of the samples synthesized at varying pH. Moreover, the fine band structures at surfaces and grain boundaries of CdSe QDs prepared are probed by the SPV spectra of the samples at varying pH values. The relationship between the grain size and the photo-generated carrier transport behavior is discussed according to the detected EFISPV results of the QDs.
    [1]

    Xu X Q, Sixto G, Iván M S, Antonio A, Juan B, Xu G 2010 Mater. Chem. Phys. 124 709

    [2]

    Yang Z S, Chem C Y, Roy P, Chang H T 2011 Chem. Commun. 47 9561

    [3]

    Qu D L, Zhang Z S, Yue S Z, Wu Q Y, Yan P R, Zhao Y, Liu S Y 2012 Chin. Phys. Lett. 29 097805

    [4]

    Vibin M, Vinayakan R, John A, Rejiya C S, Raji V, Abraham A 2011 J. Colloid Interface Sci. 357 366

    [5]

    Huang H B, Xu L, Chen H M, Huang X F, Chen K J, Feng D 1999 Chin. Phys. 8 40

    [6]

    Peng Z A, Peng J 2001 J. Am. Chem. Soc. 123 183

    [7]

    Miao Y M, Li C R, Cao L, Liu R B, He Y P, Xie S S, Zou B S 2005 Chin. Phys. 14 2262

    [8]

    Li L Q, Liu A P, Zhao H X, Cui C, Tang W H 2012 Acta Phys. Sin. 61 108201 (in Chinese) [李立群, 刘爱萍, 赵海新, 崔灿, 唐为华 2012 物理学报 61 108201]

    [9]

    Mahmoud W E, Al-Amri A M, Yaghmour S J 2012 Opt. Mater. 34 1082

    [10]

    Wang Y L, Mo Y C, Zhou L Y 2011 Spectrochim. Acta A 79 1311

    [11]

    Kim S M, Yang H S 2011 Curr. Appl. Phys. 11 1056

    [12]

    Chen D A, Shen L, Zhang J Y, Cui Y P 2007 Acta Phys. Sin. 56 6340 (in Chinese) [陈定安, 沈 里, 张家雨, 崔一平 2007 物理学报 56 6340]

    [13]

    Liu B C, Pan X Q, Tian Q, Wu Z L 2006 Chin. Phys. 15 1067

    [14]

    Woggon U, Gindele F, Wind O, Klingshirn C 1996 Phys. Rev. B 54 1506

    [15]

    Li K Y, Song G J, Zhang J, Wang C M, Guo B 2011 J. Photochem. Photobiol. A 218 213

    [16]

    Li K Y, Zhang H, Yang W Y, Wei S L, Wang D Y 2010 Mater. Chem. Phys. 123 98

    [17]

    Klayman D L, Griffin T S 1973 J. Am. Chem. Soc. 95 197

    [18]

    Kronik L, Shapira Y 1999 Surf. Sci. Rep. 37 24

    [19]

    Yu W W, Qu L H, Guo W Z, Peng X 2003 Chem. Mater. 15 2854

    [20]

    Fang R C 2001 Solid State Spectroscopy (Hefei: University of Science and Technology of China Press) pp177-180 (in Chinese) [方容川 2001固体光谱学 (合肥: 中国科学技术大学出版社) 第177–180页]

    [21]

    Sadao A (Translated by Ji Z G et al.) 2009 Properties of Group-IV, III-V and II-VI Semiconductors (Beijing: Sciecne Press) p144, 161, 209 (in Chinese) [Sadao A (季振国等译) 2009 IV族, III-V族和II-VI族半导体材料的特性 (北京: 科学出版社) 第144, 161, 209页]

    [22]

    Woggon U 1998 Optical Properties of Semiconductor Quantum Dots (Berlin: Springer-Verlag) pp52-62

    [23]

    Yang W Y, Li K Y, Wei S L, Song G J, Zhang J 2011 11th IUMRS International Conference in Asia Qingdao, China, September 25-28, 2010 p114

    [24]

    Li M Z 2006 Technique and Applications of Spectral Analysis (Beijing: Science Press ) pp43-44 (in Chinese) [李民赞 2006光谱分析技术及其应用 (北京:科学出版社)第43–44页]

    [25]

    Li K Y, Liu T, Zhou B J, Wei S L, Yang W Y 2010 Acta Phys. -Chem. Sin. 26 403 (in Chinese) [李葵英, 刘 通, 周冰晶, 魏赛玲, 杨伟勇 2010 物理化学学报 26 403]

    [26]

    Huang K 1985 Solid State Physics (Beijing: Higher Education Press) pp354-355 (in Chinese) [黄 昆 1985固体物理学 (北京: 高等教育出版社) 第354-355页]

  • [1]

    Xu X Q, Sixto G, Iván M S, Antonio A, Juan B, Xu G 2010 Mater. Chem. Phys. 124 709

    [2]

    Yang Z S, Chem C Y, Roy P, Chang H T 2011 Chem. Commun. 47 9561

    [3]

    Qu D L, Zhang Z S, Yue S Z, Wu Q Y, Yan P R, Zhao Y, Liu S Y 2012 Chin. Phys. Lett. 29 097805

    [4]

    Vibin M, Vinayakan R, John A, Rejiya C S, Raji V, Abraham A 2011 J. Colloid Interface Sci. 357 366

    [5]

    Huang H B, Xu L, Chen H M, Huang X F, Chen K J, Feng D 1999 Chin. Phys. 8 40

    [6]

    Peng Z A, Peng J 2001 J. Am. Chem. Soc. 123 183

    [7]

    Miao Y M, Li C R, Cao L, Liu R B, He Y P, Xie S S, Zou B S 2005 Chin. Phys. 14 2262

    [8]

    Li L Q, Liu A P, Zhao H X, Cui C, Tang W H 2012 Acta Phys. Sin. 61 108201 (in Chinese) [李立群, 刘爱萍, 赵海新, 崔灿, 唐为华 2012 物理学报 61 108201]

    [9]

    Mahmoud W E, Al-Amri A M, Yaghmour S J 2012 Opt. Mater. 34 1082

    [10]

    Wang Y L, Mo Y C, Zhou L Y 2011 Spectrochim. Acta A 79 1311

    [11]

    Kim S M, Yang H S 2011 Curr. Appl. Phys. 11 1056

    [12]

    Chen D A, Shen L, Zhang J Y, Cui Y P 2007 Acta Phys. Sin. 56 6340 (in Chinese) [陈定安, 沈 里, 张家雨, 崔一平 2007 物理学报 56 6340]

    [13]

    Liu B C, Pan X Q, Tian Q, Wu Z L 2006 Chin. Phys. 15 1067

    [14]

    Woggon U, Gindele F, Wind O, Klingshirn C 1996 Phys. Rev. B 54 1506

    [15]

    Li K Y, Song G J, Zhang J, Wang C M, Guo B 2011 J. Photochem. Photobiol. A 218 213

    [16]

    Li K Y, Zhang H, Yang W Y, Wei S L, Wang D Y 2010 Mater. Chem. Phys. 123 98

    [17]

    Klayman D L, Griffin T S 1973 J. Am. Chem. Soc. 95 197

    [18]

    Kronik L, Shapira Y 1999 Surf. Sci. Rep. 37 24

    [19]

    Yu W W, Qu L H, Guo W Z, Peng X 2003 Chem. Mater. 15 2854

    [20]

    Fang R C 2001 Solid State Spectroscopy (Hefei: University of Science and Technology of China Press) pp177-180 (in Chinese) [方容川 2001固体光谱学 (合肥: 中国科学技术大学出版社) 第177–180页]

    [21]

    Sadao A (Translated by Ji Z G et al.) 2009 Properties of Group-IV, III-V and II-VI Semiconductors (Beijing: Sciecne Press) p144, 161, 209 (in Chinese) [Sadao A (季振国等译) 2009 IV族, III-V族和II-VI族半导体材料的特性 (北京: 科学出版社) 第144, 161, 209页]

    [22]

    Woggon U 1998 Optical Properties of Semiconductor Quantum Dots (Berlin: Springer-Verlag) pp52-62

    [23]

    Yang W Y, Li K Y, Wei S L, Song G J, Zhang J 2011 11th IUMRS International Conference in Asia Qingdao, China, September 25-28, 2010 p114

    [24]

    Li M Z 2006 Technique and Applications of Spectral Analysis (Beijing: Science Press ) pp43-44 (in Chinese) [李民赞 2006光谱分析技术及其应用 (北京:科学出版社)第43–44页]

    [25]

    Li K Y, Liu T, Zhou B J, Wei S L, Yang W Y 2010 Acta Phys. -Chem. Sin. 26 403 (in Chinese) [李葵英, 刘 通, 周冰晶, 魏赛玲, 杨伟勇 2010 物理化学学报 26 403]

    [26]

    Huang K 1985 Solid State Physics (Beijing: Higher Education Press) pp354-355 (in Chinese) [黄 昆 1985固体物理学 (北京: 高等教育出版社) 第354-355页]

  • [1] Lin Ying-Ying, Li Kui-Ying, Shan Qing-Song, Yin Hua, Zhu Rui-Ping. Photoacoustic and surface photovoltaic characteristics of L-Cysteine-capped ZnSe quantum dots with a core-shell structure. Acta Physica Sinica, 2016, 65(3): 038101. doi: 10.7498/aps.65.038101
    [2] Tao Ze-Hua, Dong Hai-Ming, Duan Yi-Feng. Photon-excited carriers and emission of graphene in terahertz radiation fields. Acta Physica Sinica, 2018, 67(2): 027801. doi: 10.7498/aps.67.20171730
    [3] Li Gao-Fang, Ma Guo-Hong, Ma Hong, Chu Feng-Hong, Cui Hao-Yang, Liu Wei-Jing, Song Xiao-Jun, Jiang You-Hua, Huang Zhi-Ming, Chu Jun-Hao. Photocarrier dynamics in zinc selenide studied with optical-pump terahertz-probe spectroscopy. Acta Physica Sinica, 2016, 65(24): 247201. doi: 10.7498/aps.65.247201
    [4] Jiao Wei, Lei Yan-Lian, Zhang Qiao-Ming, Liu Ya-Li, Chen Lin, You Yin-Tao, Xiong Zu-Hong. Light-induced magnetoconductance effect in organic light-emitting diodes. Acta Physica Sinica, 2012, 61(18): 187305. doi: 10.7498/aps.61.187305
    [5] Li Jiang-Jiang, Gao Zhi-Yuan, Xue Xiao-Wei, Li Hui-Min, Deng Jun, Cui Bi-Feng, Zou De-Shu. On-chip fabrication of lateral growth ZnO nanowire array UV sensor. Acta Physica Sinica, 2016, 65(11): 118104. doi: 10.7498/aps.65.118104
    [6] Gao Ren-Xi, Gao Sheng-Ying, Fan Guang-Hua, Liu Jie, Wang Qiang, Zhao Hai-Feng, Qu Shi-Liang. Enhancement of surface photoconductivityin 6H-silicon carbide crystal modified by femtosecond laser pulse irradiation. Acta Physica Sinica, 2014, 63(6): 067801. doi: 10.7498/aps.63.067801
    [7] Yin Jian-Ping, Ji Xian-Ming. A novel beam-splitter for surface wave-guided atoms or molecules. Acta Physica Sinica, 2005, 54(10): 4659-4665. doi: 10.7498/aps.54.4659
    [8] Sun Li-Yuan, Gao Zhi-Yuan, Zou De-Shu, Zhang Lu, Ma Li, Tian Liang, Shen Guang-Di. The optimization of lithography process on the deep muti-stepped surface. Acta Physica Sinica, 2012, 61(20): 206801. doi: 10.7498/aps.61.206801
    [9] Peng Jing, Xu Zhi-Mou, Wu Xiao-Feng, Sun Tang-You. A study of LED with surface photonic crystal structure fabricated by the nanoimprint lithography. Acta Physica Sinica, 2013, 62(3): 036104. doi: 10.7498/aps.62.036104
    [10] Yang Xiang-Dong, Wang Guang-Chang, Zhang Shuang-Gen, Wang Xiang-Xian, Zheng Zhi-Jian, Gu Yu-Qiu, Liu Hong-Jie, Wen Tian-Shu, Ge Fang-Fang, Jiao Chun-Ye, Zhou Wei-Min. Experimental study of optical emission from the rear surface in ultrashort ultra-intense laser interaction with solid targets. Acta Physica Sinica, 2005, 54(10): 4803-4807. doi: 10.7498/aps.54.4803
  • Citation:
Metrics
  • Abstract views:  823
  • PDF Downloads:  1081
  • Cited By: 0
Publishing process
  • Received Date:  04 September 2012
  • Accepted Date:  14 November 2012
  • Published Online:  20 March 2013

Carrier transport characteristics in CdSe/CdS/Thioglycolic acid ligand quantum dots with a core-shell structure

  • 1. State Key Lab of Metastable Materials Technology and Science, Yanshan University, Qinhuangdao 066004, China

Abstract: In the present paper, we synthesize CdSe quantum dots (QDs) that are stabilized by thioglycolic acid according to the water-phase synthesis. The X-ray diffraction and HRTEM results confirm that the samples prepared each possess a sphalerite structure. The EDS and FT-IR spectra of the samples show that a core-shell structure is formed between the CdSe nanoparticles and the ligand. The fine band structures and the characteristics of the surface states in a connection with the structures are identified by the surface photovoltage (SPV) spectrum of the samples. Two SPV response peaks, located at 475 nm (2.61 eV) and 400 nm (3.1 eV), are closely related to the band-band transitions of the core-CdSe and the shell-CdS, respectively; the SPV response at 370 nm (3.35 eV) is correlated with the n → π* transition between the hydroxyl and sulfydryl (or hydroxyl). It is because of an obvious quantum size effect of the samples that both PL line broadens and SPV response intensity increases with the decrease of the grain size of the sample. The change trend of the surface photoacoustic signal intensity is contrary to that of the SPV response intensity of the samples synthesized at varying pH. Moreover, the fine band structures at surfaces and grain boundaries of CdSe QDs prepared are probed by the SPV spectra of the samples at varying pH values. The relationship between the grain size and the photo-generated carrier transport behavior is discussed according to the detected EFISPV results of the QDs.

Reference (26)

Catalog

    /

    返回文章
    返回