Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Friction and wear performance of the 0.5Ba(Ti0.8Zr0.2)O3-0.5(Ba0.7Ca0.3)TiO3 piezoelectric film

Zhang Yan Wang Zeng-Mei Chen Yun-Fei Guo Xin-Li Sun Wei Yuan Guo-Liang Yin Jiang Liu Zhi-Guo

Friction and wear performance of the 0.5Ba(Ti0.8Zr0.2)O3-0.5(Ba0.7Ca0.3)TiO3 piezoelectric film

Zhang Yan, Wang Zeng-Mei, Chen Yun-Fei, Guo Xin-Li, Sun Wei, Yuan Guo-Liang, Yin Jiang, Liu Zhi-Guo
PDF
Get Citation
  • As a lead-free piezoelectric material with potential application, 0.5Ba(Ti0.8Zr0.2)O3-0.5(Ba0.7Ca0.3)TiO3 (BZT-0.5BCT) ceramics, which has a morphotropic phase boundary composition, deserves much attention due to its excellent ferroelectric and piezoelectric properties. BZT-0.5BCT lead-free piezoelectric film has been synthesized on a Si (100) substrate by Sol-Gel process. The topography of the film measured using an atomic force microscope and a scanning electron microscope shows that the surface of the prepared film is smooth, and the grain is in the shape of hemisphere with a diameter of 80-100 nm. The film is 1.7 μm in thickness, with pores inside. Friction experiments show that the friction between the tip and the piezoelectric film is much larger than that between the tip and the SiO2 substrate, because of the existence of electrostatic force between the film and the silicon tip. However, the friction coefficients obtained are approximately equal. Nano-scratch experiments show that the BZT-0.5BCT film has a high normal carrying capacity, but a poor tangential wear resistance. The average elastic modulus of the film is 23.64 GPa ± 5 GPa, and its hardness is 2.7-4 GPa, both being slightly lower than those of the bulk value in PZT ceramics.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2012CB619401), the National Natural Science Foundation of China (Grant Nos. 51002029, 11134004), the Ph. D. Programs Foundation of Ministry of Education of China (Grant No. 20100092120039), and the Opening Project for State Key Laboratory of Crystal Materials, Shandong University, China (Grant No. KF1107).
    [1]

    Jaffe B, Cook W, Jaffe H 1971 Piezoeletric Ceramics (New York: Academic Press) p92

    [2]

    Cross E 2004 Nature 432 24

    [3]

    Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M 2004 Nature 432 84

    [4]

    He C, Fu X, Xu F, Wang J, Zhu K, Du C, Liu Y 2012 Chin. Phys. B 21 054207

    [5]

    He C, Xu F, Wang J, Du C, Zhu K, Liu Y 2011 J. Appl. Phys. 110 083513

    [6]

    He C, Chen H, Sun L, Wang J, Xu F, Du C, Zhu K, Liu Y 2012 Cryst. Res. Tech. 47 610

    [7]

    Takenaka T, Nagata H 2005 J. Eur. Ceram. Soc. 25 2693

    [8]

    Ren X B 2004 Nat. Mater. 3 91

    [9]

    Zhang S J, Xia R, Shrout T R, Zang G Z, Wang J F 2006 J. Appl. Phys. 100 104108

    [10]

    Bao H X, Zhou C, Xue D Z, Gao J H, Ren X B 2010 J. Phys. D: Appl. Phys. 43 465401

    [11]

    Shrout T R, Zhang S J 2007 J. Electroceram. 19 111

    [12]

    Liu W F, Ren X B 2009 Phys. Rev. Lett. 103 257602

    [13]

    Hutter J L, Bechhoefer J 1993 Rev. Sci. Instrum. 64 1868

    [14]

    Ogletree D F, Carpick R W, Salmeron M 1996 Rev. Sci. Instrum. 67 3298

    [15]

    Oliver W C, Pharra G M 2004 J. Mater. Res. 19 3

    [16]

    Mate C, McClelland G, Erlandsson R, Chiang S 1987 Phys. Rev. Lett. 591942

    [17]

    Bahr D F, Robach J S, Wring J S, Francis L F, Gerberich W W 1999 Mater. Sci. Eng. A 259 126

  • [1]

    Jaffe B, Cook W, Jaffe H 1971 Piezoeletric Ceramics (New York: Academic Press) p92

    [2]

    Cross E 2004 Nature 432 24

    [3]

    Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M 2004 Nature 432 84

    [4]

    He C, Fu X, Xu F, Wang J, Zhu K, Du C, Liu Y 2012 Chin. Phys. B 21 054207

    [5]

    He C, Xu F, Wang J, Du C, Zhu K, Liu Y 2011 J. Appl. Phys. 110 083513

    [6]

    He C, Chen H, Sun L, Wang J, Xu F, Du C, Zhu K, Liu Y 2012 Cryst. Res. Tech. 47 610

    [7]

    Takenaka T, Nagata H 2005 J. Eur. Ceram. Soc. 25 2693

    [8]

    Ren X B 2004 Nat. Mater. 3 91

    [9]

    Zhang S J, Xia R, Shrout T R, Zang G Z, Wang J F 2006 J. Appl. Phys. 100 104108

    [10]

    Bao H X, Zhou C, Xue D Z, Gao J H, Ren X B 2010 J. Phys. D: Appl. Phys. 43 465401

    [11]

    Shrout T R, Zhang S J 2007 J. Electroceram. 19 111

    [12]

    Liu W F, Ren X B 2009 Phys. Rev. Lett. 103 257602

    [13]

    Hutter J L, Bechhoefer J 1993 Rev. Sci. Instrum. 64 1868

    [14]

    Ogletree D F, Carpick R W, Salmeron M 1996 Rev. Sci. Instrum. 67 3298

    [15]

    Oliver W C, Pharra G M 2004 J. Mater. Res. 19 3

    [16]

    Mate C, McClelland G, Erlandsson R, Chiang S 1987 Phys. Rev. Lett. 591942

    [17]

    Bahr D F, Robach J S, Wring J S, Francis L F, Gerberich W W 1999 Mater. Sci. Eng. A 259 126

  • [1] An Tao, Wen Mao, Tian Hong-Wei, Wang Li-Li, Song Li-Jun, Zheng Wei-Tao. Fracture behavior of TiN coating under nanoindentation and nanoscratch test. Acta Physica Sinica, 2013, 62(13): 136201. doi: 10.7498/aps.62.136201
    [2] Wang Hua-Tao, Qin Zhao-Dong, Ni Yu-Shan, Zhang Wen. Multi-scale simulation of the deformation in nano-indentation under different crystal orientations. Acta Physica Sinica, 2009, 58(2): 1057-1063. doi: 10.7498/aps.58.1057
    [3] Li Rui, Liu Teng, Chen Xiang, Chen Si-Cong, Fu Yi-Hong, Liu Lin. Influence of interface structure on nanoindentation behavior of Cu/Ni multilayer film: Atomic scale simulation. Acta Physica Sinica, 2018, 67(19): 190202. doi: 10.7498/aps.67.20180958
    [4] Zhang Jian-Min, Xu Ke-Wei. The measurement of creep rate sensitivity of copper at room temperature by using nanoindentation. Acta Physica Sinica, 2004, 53(8): 2439-2443. doi: 10.7498/aps.53.2439
    [5] Hu Xing-Jian, Zheng Bai-Lin, Hu Teng-Yue, Yang Biao, He Peng-Fei, Yue Zhu-Feng. Nanoindentation simulation of Ni-base single-crystal superalloy with the consideration of interface effect. Acta Physica Sinica, 2014, 63(17): 176201. doi: 10.7498/aps.63.176201
    [6] Hu Xing-Jian, Zheng Bai-Lin, Yang Biao, Yu Jin-Gui, He Peng-Fei, Yue Zhu-Feng. Influence of initial indentation point on nanoindentation of Ni-based single crystal line alloys. Acta Physica Sinica, 2015, 64(7): 076201. doi: 10.7498/aps.64.076201
    [7] Zhang Chong-Hong, Zhang Yong, Zhou Li-Hong, Li Bing-Sheng, Yang Yi-Tao. Study on nanohardness of helium-implanted 4H-SiC. Acta Physica Sinica, 2010, 59(6): 4130-4135. doi: 10.7498/aps.59.4130
    [8] Li Hong-Xuan, Ji Li, Zhao Fei, Du Wen, Zhou Hui-Di, Chen Jian-Min, Quan Wei-Long. Molecular dynamical simulation on the mechanical property of hydrogenated diamond-like carbon films. Acta Physica Sinica, 2010, 59(8): 5687-5691. doi: 10.7498/aps.59.5687
    [9] Liu Yu-Liang, Chen Zhi-Gang, Sun Da-Xing, Zhang Guang-Yu. Quantitative research into the influence of slider-disk contact force on the information intensity of the magnetic recording layer. Acta Physica Sinica, 2015, 64(23): 237502. doi: 10.7498/aps.64.237502
    [10] He Zhi-Bing, Yang Zhi-Lin, Yan Jian-Cheng, Song Zhi-Min, Lu Tie-Cheng. Structure and mechanical property of glow discharge polymer. Acta Physica Sinica, 2011, 60(8): 086803. doi: 10.7498/aps.60.086803
  • Citation:
Metrics
  • Abstract views:  1287
  • PDF Downloads:  577
  • Cited By: 0
Publishing process
  • Received Date:  12 June 2012
  • Accepted Date:  05 November 2012
  • Published Online:  20 March 2013

Friction and wear performance of the 0.5Ba(Ti0.8Zr0.2)O3-0.5(Ba0.7Ca0.3)TiO3 piezoelectric film

  • 1. School of Mechanical Engineering, Jiangsu Key Laboratory for Design, Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 210096, China;
  • 2. School of Materials Science and Engineering, Jiangsu Key Laboratory of Construction Materials, Southeast University, Nanjing 211189 China;
  • 3. State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China;
  • 4. School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;
  • 5. Department of Materials Science and Engineering, National Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China
Fund Project:  Project supported by the National Basic Research Program of China (Grant No. 2012CB619401), the National Natural Science Foundation of China (Grant Nos. 51002029, 11134004), the Ph. D. Programs Foundation of Ministry of Education of China (Grant No. 20100092120039), and the Opening Project for State Key Laboratory of Crystal Materials, Shandong University, China (Grant No. KF1107).

Abstract: As a lead-free piezoelectric material with potential application, 0.5Ba(Ti0.8Zr0.2)O3-0.5(Ba0.7Ca0.3)TiO3 (BZT-0.5BCT) ceramics, which has a morphotropic phase boundary composition, deserves much attention due to its excellent ferroelectric and piezoelectric properties. BZT-0.5BCT lead-free piezoelectric film has been synthesized on a Si (100) substrate by Sol-Gel process. The topography of the film measured using an atomic force microscope and a scanning electron microscope shows that the surface of the prepared film is smooth, and the grain is in the shape of hemisphere with a diameter of 80-100 nm. The film is 1.7 μm in thickness, with pores inside. Friction experiments show that the friction between the tip and the piezoelectric film is much larger than that between the tip and the SiO2 substrate, because of the existence of electrostatic force between the film and the silicon tip. However, the friction coefficients obtained are approximately equal. Nano-scratch experiments show that the BZT-0.5BCT film has a high normal carrying capacity, but a poor tangential wear resistance. The average elastic modulus of the film is 23.64 GPa ± 5 GPa, and its hardness is 2.7-4 GPa, both being slightly lower than those of the bulk value in PZT ceramics.

Reference (17)

Catalog

    /

    返回文章
    返回