Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Thermal transport of graphene nanoribbons embedding linear defects

Yao Hai-Feng Xie Yue-E Ouyang Tao Chen Yuan-Ping

Thermal transport of graphene nanoribbons embedding linear defects

Yao Hai-Feng, Xie Yue-E, Ouyang Tao, Chen Yuan-Ping
PDF
Get Citation
  • Using nonequilibrium Green's function method, the thermal transport properties of zigzag graphene nanoribbons (ZGNR) embedding a finite (semi-infinite or infinite) long linear defect are investigated in this paper. The results show that defect type and defect length have significant influence on the thermal conductance of ZGNR. When the embedded linear defects have the same lengths, thermal conductance of ZGNR embedding t5t7 defect is lower than that of ZGNR embedding Stone-Wales defect. As for the ZGNR embedding finite and the same type defects, their thermal conductance reduce with the increase of the defect length. However, as the linear defect is long enough, the thermal conductance is insensitive to the change of length. By comparing the ZGNRs embedding finite, semi-infinite and infinite long defects, we find that the thermal conductance of ZGNR embedding an infinite long defect is higher than that of ZGNR embedding a semi-infinite defect, while the thermal conductance of the latter is higher than that of ZGNR embedding a finite long defect. This is due to the fact that different structures possess different numbers of scattering interfaces in the phonon transmission direction. The more the scattering interfaces, the lower the thermal conductance is. These thermal transport phenomena are explained by analyzing transmission coefficient and local density of states. These results indicate that linear defects can tune thermal transport property of ZGNR efficiently.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11074213, 51176161, 51006086), and Joint Funds of Hunan Provincial Natural Science Foundation of China (Grant No. 10JJ9001).
    [1]

    Jin Z F, Tong G P, Jiang Y J 2009 Acta Phys. Sin. 58 8537 (in Chinese) [金子飞, 童国平, 蒋永进 2009物理学报 58 8537]

    [2]

    Hu H, Cai J M, Zhang C D, Gao M, Pan Y, Du S X, Sun Q F, Niu Q, Xie X C, Gao H J 2010 Chin. Phys. B 19 037202

    [3]

    Tan C L, Tan Z B, Ma L, Chen J, Yang F, Qu F M, Liu G T, Yang H F, Yang C L, L L 2009 Acta Phys. Sin. 58 5726 (in Chinese) [谭长玲, 谭振兵, 马 丽, 陈 军, 杨 帆, 屈帆明, 刘广同, 杨海方, 杨昌黎, 吕力 2009 物理学报 58 5726]

    [4]

    Xie Y E, Chen Y P, Zhong J X 2009 J. Appl. Phys. 106 103714

    [5]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [6]

    Areshkin D A, Gunlycke D, White C T 2007 Nano Lett. 7 204

    [7]

    Xu Z, Zheng Q S, Chen G 2007 Appl. Phys. Lett. 90 223115

    [8]

    Liao W H, Zhou G H, Xi F 2008 J. Appl. Phys. 104 126105

    [9]

    Wei Y, Tong G P 2009 Acta Phys. Sin. 58 1931 (in Chinese) [韦 勇, 童国平 2009 物理学报 58 1931]

    [10]

    Hu X H, Xu J M, Sun L T 2012 Acta Phys. Sin. 61 047106 (in Chinese) [胡小会, 许俊敏, 孙立涛 2012 物理学报 61 047106]

    [11]

    Trauzettel B B, Bulaev D V, Loss D, Burkard G 2006 Nat. Phys. 3 192

    [12]

    Nakada K, Fujita M, Dresselhaus G, Dresselhaus M S 1996 Phys. ReV. B 54 17954

    [13]

    Hu H X, Zhang Z H, Liu X H, Qiu M, Ding K H 2009 Acta Phys. Sin. 58 7156 (in Chinese) [胡海鑫, 张振华, 刘新海, 邱 明, 丁开和 2009 物理学报 58 7156]

    [14]

    Brey L, Fertig H A 2006 Phys. Rev. B 73 235411

    [15]

    Zhang Y L, Liu K H, Wang W L, Bai X D, Wang E G 2009 Physics 38 401 (in Chinese) [张盈利, 刘开辉, 王文龙, 白雪冬, 王恩哥 2009 物理 38 401]

    [16]

    Chen J H, Cullen W G, Jang C, Fuhrer M S, Williams E D 2009 Phys. Rev. Lett. 102 236805

    [17]

    Kotakoski J, Krasheninnikov A V, Kaiser V, Meyer J C 2011 arXiv: 1102.0174v1 [cond-mat.mtrl-sci]

    [18]

    Ma J, Alfe D, Michaelides A, Wang E 2009 Phys. Rev. B 80 033407

    [19]

    Lee G D, Wang C Z, Yoon E, Hwang N M, Kim D Y, Ho K M 2005 Phys. Rev. Lett. 95 205501

    [20]

    Peng X Y, Ahuja R 2008 Nano Lett. 8 4464

    [21]

    Lu P, Zhang Z H, Guo W L 2009 Phys. Lett. A 373 3354

    [22]

    Lahiri J, Lin Y, Bozkurt P, Oleynik I I, Batzill M 2010 Nanotechnology 5 326

    [23]

    Terrones H, L R, Terrones M, Dresselhaus M S 2012 Rep. Prog. Phys. 75 062501

    [24]

    Botello-Mëndez A R, Declerck X, Terrones M, Terrones H, Charlier J C 2011 Nanoscale 3 2868

    [25]

    Lin X Q, Ni J 2011 Phys. Rev. B 84 075461

    [26]

    Kou L Z, Tang C, Guo W L, Chen C F 2011 Acs. Nano 5 1012

    [27]

    Gunlycke D, White C T 2011 Phys. Rev. Lett. 106 136806

    [28]

    Hou Q W, Cao B Y, Guo Z Y 2009 Acta Phys. Sin. 58 7809 (in Chinese) [侯泉文, 曹炳阳, 过增元 2009 物理学报 58 7809]

    [29]

    Bao W X, Zhu C C 2006 Acta Phys. Sin. 55 3552 (in Chinese) [保文星, 朱长纯 2006物理学报 55 3552]

    [30]

    Hu J N, Ruan X L, Chen Y P 2009 Nano Lett. 9 2730

    [31]

    Yang P, Wang X L, Li P, Wang H, Zhang L Q, Xie F W 2012 Acta Phys. Sin. 61 076501 (in Chinese) [杨 平, 王晓亮, 李 培, 王 欢, 张立强, 谢方伟 2012 物理学报 61 076501]

    [32]

    Xie Z X, Chen K Q, Duan W H 2011 J. Phys.: Condens. Matter 23 315302

    [33]

    Hao F, Fang D N, Xu Z P 2011 Appl. Phys. Lett. 99 041901

    [34]

    Morooka M, Yamamoto T, Watanabe K 2008 Phys. Rev. B 77 033412

    [35]

    Saito R, Dresselhaus G, Dresselhaus M S 1998 Physical Properties of Carbon Nanotubes (London: Imperial College Press) p170

    [36]

    Yamamoto T, Watanabe K, Mii K 2004 Phys. Rev. B 70 245402

    [37]

    Brenner D W 1990 Phys. Rev. B 42 9458

    [38]

    Mingo N 2006 Phys. Rev. B 74 125402

    [39]

    Wang J S, Wang J, Lu J T 2008 Eur. Phys. J. B 62 381

    [40]

    Lopez S M P, Sancho J M 1985 Rubio J. Phys. F: Met. Phys. 15 851

  • [1]

    Jin Z F, Tong G P, Jiang Y J 2009 Acta Phys. Sin. 58 8537 (in Chinese) [金子飞, 童国平, 蒋永进 2009物理学报 58 8537]

    [2]

    Hu H, Cai J M, Zhang C D, Gao M, Pan Y, Du S X, Sun Q F, Niu Q, Xie X C, Gao H J 2010 Chin. Phys. B 19 037202

    [3]

    Tan C L, Tan Z B, Ma L, Chen J, Yang F, Qu F M, Liu G T, Yang H F, Yang C L, L L 2009 Acta Phys. Sin. 58 5726 (in Chinese) [谭长玲, 谭振兵, 马 丽, 陈 军, 杨 帆, 屈帆明, 刘广同, 杨海方, 杨昌黎, 吕力 2009 物理学报 58 5726]

    [4]

    Xie Y E, Chen Y P, Zhong J X 2009 J. Appl. Phys. 106 103714

    [5]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [6]

    Areshkin D A, Gunlycke D, White C T 2007 Nano Lett. 7 204

    [7]

    Xu Z, Zheng Q S, Chen G 2007 Appl. Phys. Lett. 90 223115

    [8]

    Liao W H, Zhou G H, Xi F 2008 J. Appl. Phys. 104 126105

    [9]

    Wei Y, Tong G P 2009 Acta Phys. Sin. 58 1931 (in Chinese) [韦 勇, 童国平 2009 物理学报 58 1931]

    [10]

    Hu X H, Xu J M, Sun L T 2012 Acta Phys. Sin. 61 047106 (in Chinese) [胡小会, 许俊敏, 孙立涛 2012 物理学报 61 047106]

    [11]

    Trauzettel B B, Bulaev D V, Loss D, Burkard G 2006 Nat. Phys. 3 192

    [12]

    Nakada K, Fujita M, Dresselhaus G, Dresselhaus M S 1996 Phys. ReV. B 54 17954

    [13]

    Hu H X, Zhang Z H, Liu X H, Qiu M, Ding K H 2009 Acta Phys. Sin. 58 7156 (in Chinese) [胡海鑫, 张振华, 刘新海, 邱 明, 丁开和 2009 物理学报 58 7156]

    [14]

    Brey L, Fertig H A 2006 Phys. Rev. B 73 235411

    [15]

    Zhang Y L, Liu K H, Wang W L, Bai X D, Wang E G 2009 Physics 38 401 (in Chinese) [张盈利, 刘开辉, 王文龙, 白雪冬, 王恩哥 2009 物理 38 401]

    [16]

    Chen J H, Cullen W G, Jang C, Fuhrer M S, Williams E D 2009 Phys. Rev. Lett. 102 236805

    [17]

    Kotakoski J, Krasheninnikov A V, Kaiser V, Meyer J C 2011 arXiv: 1102.0174v1 [cond-mat.mtrl-sci]

    [18]

    Ma J, Alfe D, Michaelides A, Wang E 2009 Phys. Rev. B 80 033407

    [19]

    Lee G D, Wang C Z, Yoon E, Hwang N M, Kim D Y, Ho K M 2005 Phys. Rev. Lett. 95 205501

    [20]

    Peng X Y, Ahuja R 2008 Nano Lett. 8 4464

    [21]

    Lu P, Zhang Z H, Guo W L 2009 Phys. Lett. A 373 3354

    [22]

    Lahiri J, Lin Y, Bozkurt P, Oleynik I I, Batzill M 2010 Nanotechnology 5 326

    [23]

    Terrones H, L R, Terrones M, Dresselhaus M S 2012 Rep. Prog. Phys. 75 062501

    [24]

    Botello-Mëndez A R, Declerck X, Terrones M, Terrones H, Charlier J C 2011 Nanoscale 3 2868

    [25]

    Lin X Q, Ni J 2011 Phys. Rev. B 84 075461

    [26]

    Kou L Z, Tang C, Guo W L, Chen C F 2011 Acs. Nano 5 1012

    [27]

    Gunlycke D, White C T 2011 Phys. Rev. Lett. 106 136806

    [28]

    Hou Q W, Cao B Y, Guo Z Y 2009 Acta Phys. Sin. 58 7809 (in Chinese) [侯泉文, 曹炳阳, 过增元 2009 物理学报 58 7809]

    [29]

    Bao W X, Zhu C C 2006 Acta Phys. Sin. 55 3552 (in Chinese) [保文星, 朱长纯 2006物理学报 55 3552]

    [30]

    Hu J N, Ruan X L, Chen Y P 2009 Nano Lett. 9 2730

    [31]

    Yang P, Wang X L, Li P, Wang H, Zhang L Q, Xie F W 2012 Acta Phys. Sin. 61 076501 (in Chinese) [杨 平, 王晓亮, 李 培, 王 欢, 张立强, 谢方伟 2012 物理学报 61 076501]

    [32]

    Xie Z X, Chen K Q, Duan W H 2011 J. Phys.: Condens. Matter 23 315302

    [33]

    Hao F, Fang D N, Xu Z P 2011 Appl. Phys. Lett. 99 041901

    [34]

    Morooka M, Yamamoto T, Watanabe K 2008 Phys. Rev. B 77 033412

    [35]

    Saito R, Dresselhaus G, Dresselhaus M S 1998 Physical Properties of Carbon Nanotubes (London: Imperial College Press) p170

    [36]

    Yamamoto T, Watanabe K, Mii K 2004 Phys. Rev. B 70 245402

    [37]

    Brenner D W 1990 Phys. Rev. B 42 9458

    [38]

    Mingo N 2006 Phys. Rev. B 74 125402

    [39]

    Wang J S, Wang J, Lu J T 2008 Eur. Phys. J. B 62 381

    [40]

    Lopez S M P, Sancho J M 1985 Rubio J. Phys. F: Met. Phys. 15 851

  • [1] Qing Qian-Jun, Zhou Xin, Xie Fang, Chen Li-Qun, Wang Xin-Jun, Tan Shi-Hua, Peng Xiao-Fang. Characteristics of acoustic phonon transport and thermal conductance in multi-terminal graphene junctions. Acta Physica Sinica, 2016, 65(8): 086301. doi: 10.7498/aps.65.086301
    [2] Nie Liu-Ying, Li Chun-Xian, Zhou Xiao-Ping, Cheng Fang, Wang Cheng-Zhi. Effects of controllable defects on thermal conductance in a nanowire with a quantum box. Acta Physica Sinica, 2011, 60(11): 116301. doi: 10.7498/aps.60.116301
    [3] Zhou Xin, Gao Ren-Bin, Tan Shi-Hua, Peng Xiao-Fang, Jiang Xiang-Tao, Bao Ben-Gang. Influence of multi-cavity dislocation distribution on thermal conductance in graphene nanoribbons. Acta Physica Sinica, 2017, 66(12): 126302. doi: 10.7498/aps.66.126302
    [4] Bao Zhi-Gang, Chen Yuan-Ping, Ouyang Tao, Yang Kai-Ke, Zhong Jian-Xin. Thermal transport in L-shaped graphene nano-junctions. Acta Physica Sinica, 2011, 60(2): 028103. doi: 10.7498/aps.60.028103
    [5] Yao Zhi-Dong, Li Wei, Gao Xian-Long. Electronic properties on the point vacancy of armchair edged graphene quantum dots. Acta Physica Sinica, 2012, 61(11): 117105. doi: 10.7498/aps.61.117105
    [6] Gu Yun-Feng, Wu Xiao-Li, Wu Hong-Zhang. Ballistic thermal rectification in the three-terminal graphene nanojunction with asymmetric connection angles. Acta Physica Sinica, 2016, 65(24): 248104. doi: 10.7498/aps.65.248104
    [7] Wei Xiao-Lin, Chen Yuan-Ping, Wang Ru-Zhi, Zhong Jian-Xin. Studies on electrical properties of graphene nanoribbons with pore defects. Acta Physica Sinica, 2013, 62(5): 057101. doi: 10.7498/aps.62.057101
    [8] Li Zhi-Quan, Zhang Ming, Peng Tao, Yue Zhong, Gu Er-Dan, Li Wen-Chao. Improvement of the local characteristics of graphene surface plasmon based on guided-mode resonance effect. Acta Physica Sinica, 2016, 65(10): 105201. doi: 10.7498/aps.65.105201
    [9] Li Qiao-Qiao, Han Wen-Peng, Zhao Wei-Jie, Lu Yan, Zhang Xin, Tan Ping-Heng, Feng Zhi-Hong, Li Jia. Raman spectra of monoand bi-layer graphenes with ion-induced defects-and its dispersive frequency on the excitation energy. Acta Physica Sinica, 2013, 62(13): 137801. doi: 10.7498/aps.62.137801
    [10] Zhao Jun, Shen Cai-Xia, Zhou Fang, Xiong Ji-Wu. Influence of magnetic field on thermal conductivity of La2-xSrxCuO4 single crystals. Acta Physica Sinica, 2005, 54(8): 3845-3850. doi: 10.7498/aps.54.3845
  • Citation:
Metrics
  • Abstract views:  1048
  • PDF Downloads:  559
  • Cited By: 0
Publishing process
  • Received Date:  10 October 2012
  • Accepted Date:  14 November 2012
  • Published Online:  20 March 2013

Thermal transport of graphene nanoribbons embedding linear defects

  • 1. Institute for Quantum Engineering and Micro-Nano Energy Technology, Faculty of Materials, Optoelectronics and Physics, Xiangtan University, Xiangtan 411105, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 11074213, 51176161, 51006086), and Joint Funds of Hunan Provincial Natural Science Foundation of China (Grant No. 10JJ9001).

Abstract: Using nonequilibrium Green's function method, the thermal transport properties of zigzag graphene nanoribbons (ZGNR) embedding a finite (semi-infinite or infinite) long linear defect are investigated in this paper. The results show that defect type and defect length have significant influence on the thermal conductance of ZGNR. When the embedded linear defects have the same lengths, thermal conductance of ZGNR embedding t5t7 defect is lower than that of ZGNR embedding Stone-Wales defect. As for the ZGNR embedding finite and the same type defects, their thermal conductance reduce with the increase of the defect length. However, as the linear defect is long enough, the thermal conductance is insensitive to the change of length. By comparing the ZGNRs embedding finite, semi-infinite and infinite long defects, we find that the thermal conductance of ZGNR embedding an infinite long defect is higher than that of ZGNR embedding a semi-infinite defect, while the thermal conductance of the latter is higher than that of ZGNR embedding a finite long defect. This is due to the fact that different structures possess different numbers of scattering interfaces in the phonon transmission direction. The more the scattering interfaces, the lower the thermal conductance is. These thermal transport phenomena are explained by analyzing transmission coefficient and local density of states. These results indicate that linear defects can tune thermal transport property of ZGNR efficiently.

Reference (40)

Catalog

    /

    返回文章
    返回