Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles studies of the structural and thermodynamic properties of TiAl3 under high pressure

Wang Hai-Yan Li Chang-Yun Gao Jie Hu Qian-Ku Mi Guo-Fa

First-principles studies of the structural and thermodynamic properties of TiAl3 under high pressure

Wang Hai-Yan, Li Chang-Yun, Gao Jie, Hu Qian-Ku, Mi Guo-Fa
PDF
Get Citation
  • In this paper, the structural properties of TiAl3 intermetallics are investigated by the plane-wave pseudopotential density functional theory method. The calculated results are consistent with experimental and other theoretical ones. Through the quasi-harmonic Debye model we calculate the thermodynamic properties and obtain the dependences of relative volume V/V0 on pressure P and temperture T, as well as the thermal expansion and specific heat coefficients under different temperatures and pressures. For the calculated results of TiAl, we find that the increase rate of thermal expansion coefficient of TiAl under the increase of temperature is higher than that of TiAl3, and further, the effect of temperature weakens with the increase of pressure. The specific heat of TiAl3 is nearly twice that of TiAl.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11147167, 51202058, 11104063), the Natural Science Research Project of Education Department of Henan Province, China (Grant No. 2011A140007) and Funds of Introduction of Talents of Henan Polytechnic University, China (Grant No. Y2009-1).
    [1]

    Zhang Y G, Han Y F, Chen G L 2001 Structural Materials of Intermetallics (Beijing: National Defense Industry Press) (in Chinese) [张永刚, 韩雅芳, 陈国良 2001 金属间化合物结构材料 (北京: 国防工业出版社)]

    [2]

    Yamaguchi M, Umakoshi Y, Yamane T 1987 Philos. Mag. A 55 301

    [3]

    Asta M, Fontaine D, Schilfgaarde M, Sluiter M, Methfessel M 1992 Phys. Rev. B 46 5055

    [4]

    Bastow T J, Foewood C T, Gibson M A, Smith M E 1998 Phys. Rev. B 58 2988

    [5]

    Amador C, Hoyt J J, Chakoumakos B C, de Fontaine D 1995 Phys. Rev. Lett. 74 4955

    [6]

    Lue C S, Xie B X, Horng S N, Su J H, Lin J Y 2005 Phys. Rev. B 71 195104

    [7]

    Saniz R, Ye L H, Shishidou T, Freeman A J 2006 Phys. Rev. B 72 014209

    [8]

    Hong T, Watson-Yang T J, Guo X Q 1991 Phys. Rev. B 43 1940

    [9]

    Viala J C, Peillon N, Clochefert L, Bouix J 1995 Mater. Sci. Eng. A 203 222

    [10]

    Zhu G L, Dai Y B, Shu D, Xiao Y P 2011 Comput. Mater. Sci. 50 2636

    [11]

    Zhu G L, Shu D, Dai Y B, Wang J, Sun B D 2009 Acta Phys. Sin. 58 S210 (in Chinese) [祝国梁, 疏达, 戴永兵, 王俊, 孙宝德 2009 物理学报 58 S210]

    [12]

    Kogachi M, Kameyama A 1995 Intermetailics 3 327

    [13]

    Ming X, Wang X L, Du F, Chen G, Wang C Z, Yin J W 2012 Acta Phys. Sin. 61 097102 [明星, 王小兰, 杜菲, 陈岗, 王春忠, 尹建武 2012 物理学报 61 097102]

    [14]

    Wang B, Liu Y, Ye J W 2012 Acta Phys. Sin. 61 186501 (in Chinese) [王斌, 刘颖, 叶金文 2012 物理学报 61 186501]

    [15]

    Du H J, Guo L C, Li D C, Yu D L, He J L 2009 Chin. Phys. Lett. 26 016403

    [16]

    Hao A M, Zhou T J, Zhu Y, Zhang X Y, Liu R P 2011 Chin. Phys. B 20 047103

    [17]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [18]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [19]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [20]

    Blanco M A, Francisco E, Luana V 2004 Comput. Phys. Commun. 158 57

    [21]

    Blanco M A, Martín Pendás A, Francisco E 1996 J. Molec. Struct.: Theochem 368 245

    [22]

    Flórez M, Recio J M, Francisco E, Blanco M A 2002 Phys. Rev. B 66 144112

    [23]

    Poirer J P 1991 Introduction to the Physics of the Earth's Interior (England: Cambridge University Press)

    [24]

    Francisco E, Blanco M A, Sanjurjo G 2001 Phys. Rev. B 63 094107

    [25]

    Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 244

    [26]

    Srinivasan S, Desch P B, Schwartz R B 1991 Scr. Metall. Mater. 25 2513

    [27]

    Nakamura M, Kimura K 1991 J. Mater. Sci. 26 2208

    [28]

    Ghosh G, van de Walle A, Asta M 2007 J. Phase. Equil. Diffu. 28 9

    [29]

    Zhang H, Wang S Q 2010 J. Mater. Sci. Technol. 26 1071

    [30]

    Boulechfar R, Ghemid S, Meradji H, Bouhafs B 2010 Physica B 405 4045

    [31]

    Krajéí M, Hafner J 2002 J. Phys. Condens. Matter 14 024101

    [32]

    Li X S, Wang H Y, Li C Y, Mi G F, Hu Q K 2012 Commun. Theor. Phys. 57 141

  • [1]

    Zhang Y G, Han Y F, Chen G L 2001 Structural Materials of Intermetallics (Beijing: National Defense Industry Press) (in Chinese) [张永刚, 韩雅芳, 陈国良 2001 金属间化合物结构材料 (北京: 国防工业出版社)]

    [2]

    Yamaguchi M, Umakoshi Y, Yamane T 1987 Philos. Mag. A 55 301

    [3]

    Asta M, Fontaine D, Schilfgaarde M, Sluiter M, Methfessel M 1992 Phys. Rev. B 46 5055

    [4]

    Bastow T J, Foewood C T, Gibson M A, Smith M E 1998 Phys. Rev. B 58 2988

    [5]

    Amador C, Hoyt J J, Chakoumakos B C, de Fontaine D 1995 Phys. Rev. Lett. 74 4955

    [6]

    Lue C S, Xie B X, Horng S N, Su J H, Lin J Y 2005 Phys. Rev. B 71 195104

    [7]

    Saniz R, Ye L H, Shishidou T, Freeman A J 2006 Phys. Rev. B 72 014209

    [8]

    Hong T, Watson-Yang T J, Guo X Q 1991 Phys. Rev. B 43 1940

    [9]

    Viala J C, Peillon N, Clochefert L, Bouix J 1995 Mater. Sci. Eng. A 203 222

    [10]

    Zhu G L, Dai Y B, Shu D, Xiao Y P 2011 Comput. Mater. Sci. 50 2636

    [11]

    Zhu G L, Shu D, Dai Y B, Wang J, Sun B D 2009 Acta Phys. Sin. 58 S210 (in Chinese) [祝国梁, 疏达, 戴永兵, 王俊, 孙宝德 2009 物理学报 58 S210]

    [12]

    Kogachi M, Kameyama A 1995 Intermetailics 3 327

    [13]

    Ming X, Wang X L, Du F, Chen G, Wang C Z, Yin J W 2012 Acta Phys. Sin. 61 097102 [明星, 王小兰, 杜菲, 陈岗, 王春忠, 尹建武 2012 物理学报 61 097102]

    [14]

    Wang B, Liu Y, Ye J W 2012 Acta Phys. Sin. 61 186501 (in Chinese) [王斌, 刘颖, 叶金文 2012 物理学报 61 186501]

    [15]

    Du H J, Guo L C, Li D C, Yu D L, He J L 2009 Chin. Phys. Lett. 26 016403

    [16]

    Hao A M, Zhou T J, Zhu Y, Zhang X Y, Liu R P 2011 Chin. Phys. B 20 047103

    [17]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [18]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [19]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [20]

    Blanco M A, Francisco E, Luana V 2004 Comput. Phys. Commun. 158 57

    [21]

    Blanco M A, Martín Pendás A, Francisco E 1996 J. Molec. Struct.: Theochem 368 245

    [22]

    Flórez M, Recio J M, Francisco E, Blanco M A 2002 Phys. Rev. B 66 144112

    [23]

    Poirer J P 1991 Introduction to the Physics of the Earth's Interior (England: Cambridge University Press)

    [24]

    Francisco E, Blanco M A, Sanjurjo G 2001 Phys. Rev. B 63 094107

    [25]

    Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 244

    [26]

    Srinivasan S, Desch P B, Schwartz R B 1991 Scr. Metall. Mater. 25 2513

    [27]

    Nakamura M, Kimura K 1991 J. Mater. Sci. 26 2208

    [28]

    Ghosh G, van de Walle A, Asta M 2007 J. Phase. Equil. Diffu. 28 9

    [29]

    Zhang H, Wang S Q 2010 J. Mater. Sci. Technol. 26 1071

    [30]

    Boulechfar R, Ghemid S, Meradji H, Bouhafs B 2010 Physica B 405 4045

    [31]

    Krajéí M, Hafner J 2002 J. Phys. Condens. Matter 14 024101

    [32]

    Li X S, Wang H Y, Li C Y, Mi G F, Hu Q K 2012 Commun. Theor. Phys. 57 141

  • [1] Lu Zhi-Wen, Zhong Zhi-Guo, Liu Ke-Tao, Song Hai-Zhen, Li Gen-Quan. First-principles calculations of microstructure and thermodynamic properties of the intermetallic compound in Ag-Mg-Zn alloy under high pressure and high temperature. Acta Physica Sinica, 2013, 62(1): 016106. doi: 10.7498/aps.62.016106
    [2] Liu Bo, Wang Xuan-Jun, Bu Xiao-Yu. First principles investigations of structural, electronic and elastic properties of ammonium perchlorate under high pressures. Acta Physica Sinica, 2016, 65(12): 126102. doi: 10.7498/aps.65.126102
    [3] Chen Zhong-Jun. First principles study of the elastic, electronic and optical properties of MgS under pressure. Acta Physica Sinica, 2012, 61(17): 177104. doi: 10.7498/aps.61.177104
    [4] Wang Jin-Rong, Zhu Jun, Hao Yan-Jun, Ji Guang-Fu, Xiang Gang, Zou Yang-Chun. First-principles study of the structural, elastic and electronic properties of RhB under high pressure. Acta Physica Sinica, 2014, 63(18): 186401. doi: 10.7498/aps.63.186401
    [5] Ming Xing, Wang Xiao-Lan, Du Fei, Chen Gang, Wang Chun-Zhong, Yin Jian-Wu. Phase transition and properties of siderite FeCO3 under high pressure: an ab initio study. Acta Physica Sinica, 2012, 61(9): 097102. doi: 10.7498/aps.61.097102
    [6] Yan Xiao-Zhen, Kuang Xiao-Yu, Mao Ai-Jie, Kuang Fang-Guang, Wang Zhen-Hua, Sheng Xiao-Wei. First-principles study on the elastic, electronic and thermodynamic properties of ErNi2B2C under high pressure. Acta Physica Sinica, 2013, 62(10): 107402. doi: 10.7498/aps.62.107402
    [7] Zhou Da-Wei, Lu Cheng, Li Gen-Quan, Song Jin-Fan, Song Yu-Ling, Bao Gang. First principles investigations of the structural stability and thermal dynamical properties of metal Ba under high pressure. Acta Physica Sinica, 2012, 61(14): 146301. doi: 10.7498/aps.61.146301
    [8] Lin Qiu-Bao, Li Ren-Quan, Wen Yu-Hua, Zhu Zi-Zhong. First-principles calculations on the structures of Wn (n=3—27) clusters. Acta Physica Sinica, 2008, 57(1): 181-185. doi: 10.7498/aps.57.181
    [9] Zhou Ping, Wang Xin-Qiang, Zhou Mu, Xia Chuan-Hui, Shi Ling-Na, Hu Cheng-Hua. First-principles study of pressure induced phase transition, electronic structure and elastic properties of CdS. Acta Physica Sinica, 2013, 62(8): 087104. doi: 10.7498/aps.62.087104
    [10] Zhang Pin-Liang, Gong Zi-Zheng, Ji Guang-Fu, Liu Song. First-principles study of high-pressure physical properties of α-Ti2Zr. Acta Physica Sinica, 2013, 62(4): 046202. doi: 10.7498/aps.62.046202
  • Citation:
Metrics
  • Abstract views:  1092
  • PDF Downloads:  716
  • Cited By: 0
Publishing process
  • Received Date:  12 July 2012
  • Accepted Date:  31 October 2012
  • Published Online:  20 March 2013

First-principles studies of the structural and thermodynamic properties of TiAl3 under high pressure

  • 1. School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 11147167, 51202058, 11104063), the Natural Science Research Project of Education Department of Henan Province, China (Grant No. 2011A140007) and Funds of Introduction of Talents of Henan Polytechnic University, China (Grant No. Y2009-1).

Abstract: In this paper, the structural properties of TiAl3 intermetallics are investigated by the plane-wave pseudopotential density functional theory method. The calculated results are consistent with experimental and other theoretical ones. Through the quasi-harmonic Debye model we calculate the thermodynamic properties and obtain the dependences of relative volume V/V0 on pressure P and temperture T, as well as the thermal expansion and specific heat coefficients under different temperatures and pressures. For the calculated results of TiAl, we find that the increase rate of thermal expansion coefficient of TiAl under the increase of temperature is higher than that of TiAl3, and further, the effect of temperature weakens with the increase of pressure. The specific heat of TiAl3 is nearly twice that of TiAl.

Reference (32)

Catalog

    /

    返回文章
    返回