Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fiber Fabry-Perot tunable filter based Fourier domain mode locking swept laser source

Chen Ming-Hui Ding Zhi-Hua Wang Cheng Song Cheng-Li

Fiber Fabry-Perot tunable filter based Fourier domain mode locking swept laser source

Chen Ming-Hui, Ding Zhi-Hua, Wang Cheng, Song Cheng-Li
PDF
Get Citation
  • An all-fiber Fourier domain mode locking (FDML) swept laser source at 1300 nm for swept source optical coherence tomography is reported. The swept laser source is realized with power amplification and laser resonator which includes gain medium, tunable filter and dispersion managed delay line. FDML swept laser can realize high-speed tuning, and phase is stable since its highly stable mode locking operation. The turning range of fiber Fabry-Perot tunable filter (FFP-TF) based FDML swept laser is 130 nm, and the 3 dB bandwidth is 70 nm with an average output power of 11 mW. The tunable speed of FDML laser is 48.12 kHz compared with 8 kHz of short-cavity FFP-TF based swept laser. The axial resolution in OCT imaging of FDML swept laser is 7.8 μm (in tissue), which is improved by 1.9 μm compared with that of short-cavity swept laser.
    • Funds: Project supported by the Doctoral Initial Funding of China and the National Natural Science Foundation of China (Grant No. 51175345).
    [1]

    Huang D, Swanson E A, Lin C P, Schuman J S, Stinson W G, Chang W, Hee M R, Flotte T, Gregory K, Puliafito C A, Fujimoto J G 1991 Science 254 1178

    [2]

    Huang L M, Ding Z H, Hong W, Wang C 2012 Acta Phys. Sin. 61 023401 (in Chinese) [黄良敏, 丁志华, 洪威, 王川 2012 物理学报 61 023401]

    [3]

    Yang Y L, Ding Z H, Wang K, Wu L, Wu L 2009 Acta Phys. Sin. 58 1773 (in Chinese) [杨亚良, 丁志华, 王凯, 吴凌, 吴兰 2009 物理学报 58 1773]

    [4]

    Wang C, Tang Z, Fang C, Yu Y J, Mao Y X, Qi B 2011 Chin. Phys. B 20 114218

    [5]

    Ma Z H, Wang R K, Zhang F, Yao J Q 2006 Chin. Phys. Lett. 23 366

    [6]

    Leitgeb R, Hitzenberger C K, Fercher A F 2003 Opt. Express 11 889

    [7]

    Wang K, Zeng Y, Ding Z H, Meng J, Shi G H, Zhang Y D 2010 Acta Phys. Sin. 59 2471 (in Chinese) [王凯, 曾炎, 丁志华, 孟婕, 史国华, 张雨东 2010 物理学报 59 2471]

    [8]

    Chinn S R, Swanson E A, Fujimoto J G 1997 Opt. Lett. 22 340

    [9]

    Ding Z H, Chen M H, Wang K 2009 Chin. J. Lasers 36 2469 (in Chinese) [丁志华, 陈明惠, 王凯, 孟婕, 吴彤, 沈龙飞 2009 中国激光 36 2469]

    [10]

    Sung Y R, Jang W Y, Yoon K K, Soohyun K 2008 Opt. Express 16 17138

    [11]

    Chen M H, Ding Z H, Xu L, Wu T, Wang C, Shi G H, Zhang Y D 2010 Chin. Opt. Lett. 8 202

    [12]

    Todor S, Biedermann, Wieser W, Huber R, Jirauschek C 2011 Opt. Express 19 8802

    [13]

    Fujimoto J G, Izatt J A, Tuchin V V 2008 Proceedings of the SPIE Photonics West 2008 Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine XII San Jose, California, USA, January 21-23, 2008 p68470Z1

    [14]

    Yun S H, Boudoux C, Pierce M C, De Boer J F, Tearney G J, Bouma B E 2004 IEEE Photon. Technol. Lett. 16 293

    [15]

    Mao Y X, Chang S, Murdock E, Flueraru C 2011 Opt. Lett. 36 1990

    [16]

    Michael K K L, Adrian M, Beau A S, Kenneth K C L, Nigel R M, Alex I V, Victor X D Y 2009 Opt. Lett. 34 2814

    [17]

    Liu G Y, Mariampillai A, Standish B A, Munce N R, Gu X J, Vitkin I A 2008 Opt. Express 16 14095

    [18]

    Wu M C, Fang W L 2005 J. Micromech. Microeng. 15 1

    [19]

    Amano T, Hiro-Oka H, Choi D H, Furukawa H, Kano F, Takeda M, Nakanishi M, Shimizu K, Ohbayashi K 2005 Appl. Opt. 44 808

    [20]

    Huber R, Wojtkowski M, Fujimoto J G 2006 Opt. Express 14 3225

    [21]

    Eigenwillig C M, Biedermann B R, Plate G, Huber R 2008 Opt. Express 16 8916

  • [1]

    Huang D, Swanson E A, Lin C P, Schuman J S, Stinson W G, Chang W, Hee M R, Flotte T, Gregory K, Puliafito C A, Fujimoto J G 1991 Science 254 1178

    [2]

    Huang L M, Ding Z H, Hong W, Wang C 2012 Acta Phys. Sin. 61 023401 (in Chinese) [黄良敏, 丁志华, 洪威, 王川 2012 物理学报 61 023401]

    [3]

    Yang Y L, Ding Z H, Wang K, Wu L, Wu L 2009 Acta Phys. Sin. 58 1773 (in Chinese) [杨亚良, 丁志华, 王凯, 吴凌, 吴兰 2009 物理学报 58 1773]

    [4]

    Wang C, Tang Z, Fang C, Yu Y J, Mao Y X, Qi B 2011 Chin. Phys. B 20 114218

    [5]

    Ma Z H, Wang R K, Zhang F, Yao J Q 2006 Chin. Phys. Lett. 23 366

    [6]

    Leitgeb R, Hitzenberger C K, Fercher A F 2003 Opt. Express 11 889

    [7]

    Wang K, Zeng Y, Ding Z H, Meng J, Shi G H, Zhang Y D 2010 Acta Phys. Sin. 59 2471 (in Chinese) [王凯, 曾炎, 丁志华, 孟婕, 史国华, 张雨东 2010 物理学报 59 2471]

    [8]

    Chinn S R, Swanson E A, Fujimoto J G 1997 Opt. Lett. 22 340

    [9]

    Ding Z H, Chen M H, Wang K 2009 Chin. J. Lasers 36 2469 (in Chinese) [丁志华, 陈明惠, 王凯, 孟婕, 吴彤, 沈龙飞 2009 中国激光 36 2469]

    [10]

    Sung Y R, Jang W Y, Yoon K K, Soohyun K 2008 Opt. Express 16 17138

    [11]

    Chen M H, Ding Z H, Xu L, Wu T, Wang C, Shi G H, Zhang Y D 2010 Chin. Opt. Lett. 8 202

    [12]

    Todor S, Biedermann, Wieser W, Huber R, Jirauschek C 2011 Opt. Express 19 8802

    [13]

    Fujimoto J G, Izatt J A, Tuchin V V 2008 Proceedings of the SPIE Photonics West 2008 Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine XII San Jose, California, USA, January 21-23, 2008 p68470Z1

    [14]

    Yun S H, Boudoux C, Pierce M C, De Boer J F, Tearney G J, Bouma B E 2004 IEEE Photon. Technol. Lett. 16 293

    [15]

    Mao Y X, Chang S, Murdock E, Flueraru C 2011 Opt. Lett. 36 1990

    [16]

    Michael K K L, Adrian M, Beau A S, Kenneth K C L, Nigel R M, Alex I V, Victor X D Y 2009 Opt. Lett. 34 2814

    [17]

    Liu G Y, Mariampillai A, Standish B A, Munce N R, Gu X J, Vitkin I A 2008 Opt. Express 16 14095

    [18]

    Wu M C, Fang W L 2005 J. Micromech. Microeng. 15 1

    [19]

    Amano T, Hiro-Oka H, Choi D H, Furukawa H, Kano F, Takeda M, Nakanishi M, Shimizu K, Ohbayashi K 2005 Appl. Opt. 44 808

    [20]

    Huber R, Wojtkowski M, Fujimoto J G 2006 Opt. Express 14 3225

    [21]

    Eigenwillig C M, Biedermann B R, Plate G, Huber R 2008 Opt. Express 16 8916

  • [1] Wang Chi, Bi Shu-Bo, Wang Li, Xia Xue-Qin, Ding Wei, Yu Ying-Jie. Field-tracing based numerical simulation technique for the investigation of ultra-small self-focusing optical fiber probe. Acta Physica Sinica, 2013, 62(2): 024217. doi: 10.7498/aps.62.024217
    [2] Huang Biao, Yu Jin-Long, Wang Wen-Rui, Wang Ju, Xue Ji-Qiang, Yu Yang, Jia Shi, Yang En-Ze. Optical bistability and optical storage based on injection locked Fabry-Perot semiconductor laser. Acta Physica Sinica, 2015, 64(4): 044204. doi: 10.7498/aps.64.044204
    [3] Fan Jin-Yu, Gao Feng, Kong Wen, Li Hai-Wen, Shi Guo-Hua. A full spectrum resamping method in polygon tunable laser-based swept-source optical coherence tomography. Acta Physica Sinica, 2017, 66(11): 114204. doi: 10.7498/aps.66.114204
    [4] Lü Jiang-Tao, Tao Wang, Ma Zhen-He, Si Guang-Yuan. Nanoring color filters based on Fabry-Pérot cavities. Acta Physica Sinica, 2013, 62(5): 057804. doi: 10.7498/aps.62.057804
    [5] Gui Xin, Hu Chen-Chen, Xie Ying, Li Zheng-Ying. Research on distributed intrinsic Fabry-Perot sensors. Acta Physica Sinica, 2015, 64(5): 050704. doi: 10.7498/aps.64.050704
    [6] Gong Yuan, Guo Yu, Rao Yun-Jiang, Zhao Tian, Wu Yu, Ran Zeng-Ling. Sensitivity analysis of hybrid fiber Fabry-Pérot refractive-index sensor. Acta Physica Sinica, 2011, 60(6): 064202. doi: 10.7498/aps.60.064202
    [7] Zhang Wei, Liu Ying-Gang, Zhang Ting, Liu Xin, Fu Hai-Wei, Jia Zhen-An. Dual micro-holes-based in-fiber Fabry-Perot interferometer sensor. Acta Physica Sinica, 2018, 67(20): 204203. doi: 10.7498/aps.67.20180528
    [8] Zhang Shu-He, Shao Meng, Zhang Sheng-Zhao, Zhou Jin-Hua. Light rays in Fourier domain. Acta Physica Sinica, 2019, 68(21): 214202. doi: 10.7498/aps.68.20190839
    [9] САМОПИШУЩИЙ СПЕКТРОМЕТР С ИНТЕРФЕРОМЕТРОМ ФАБРИ-ПЕРОПРИ ПОМОЩИ СКАНИРОВАНИЯ ДАВЛЕНИЯ. Acta Physica Sinica, 1966, 133(8): 905-910. doi: 10.7498/aps.22.905
    [10] Ma Xin, Li Ming-Yu, Liu Xu, Zhang Jin-Long, Li Yi-Yu, Sun Xue-Zheng, Gu Pei-Fu. Reflected Gaussian beam splitting phenomenon in the thin-film Fabry-Perot filter. Acta Physica Sinica, 2007, 56(3): 1746-1750. doi: 10.7498/aps.56.1746
  • Citation:
Metrics
  • Abstract views:  1073
  • PDF Downloads:  823
  • Cited By: 0
Publishing process
  • Received Date:  31 August 2012
  • Accepted Date:  27 September 2012
  • Published Online:  20 March 2013

Fiber Fabry-Perot tunable filter based Fourier domain mode locking swept laser source

  • 1. Shanghai Institute for Minimally Invasive Therapy, School of Medical Instrument and Food Engineering, University of Shanghai for Science andTechnology, Shanghai 200093, China;
  • 2. State Key Laboratory of Modern Optical Instrumentation, Department of Optical Engineering, Zhejiang University, Hangzhou 310027, China
Fund Project:  Project supported by the Doctoral Initial Funding of China and the National Natural Science Foundation of China (Grant No. 51175345).

Abstract: An all-fiber Fourier domain mode locking (FDML) swept laser source at 1300 nm for swept source optical coherence tomography is reported. The swept laser source is realized with power amplification and laser resonator which includes gain medium, tunable filter and dispersion managed delay line. FDML swept laser can realize high-speed tuning, and phase is stable since its highly stable mode locking operation. The turning range of fiber Fabry-Perot tunable filter (FFP-TF) based FDML swept laser is 130 nm, and the 3 dB bandwidth is 70 nm with an average output power of 11 mW. The tunable speed of FDML laser is 48.12 kHz compared with 8 kHz of short-cavity FFP-TF based swept laser. The axial resolution in OCT imaging of FDML swept laser is 7.8 μm (in tissue), which is improved by 1.9 μm compared with that of short-cavity swept laser.

Reference (21)

Catalog

    /

    返回文章
    返回