Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Based on antenna theory to establish the random coupling model of microwave chaotic cavities

Lu Xi-Cheng Wang Jian-Guo Liu Yu Li Shuang Han Feng

Based on antenna theory to establish the random coupling model of microwave chaotic cavities

Lu Xi-Cheng, Wang Jian-Guo, Liu Yu, Li Shuang, Han Feng
PDF
Get Citation
  • To improve the ability of quickly and effectively resolving the coupling of electrically large complex cavities (microwave chaotic cavities), the statistical properties of the scattering from these cavities have been studied by using a statistical electromagnetics method. Firstly, based on the antenna theory, the input impedance expression of cavities is established by using the expanded electromagnetic eigenmode expression. Secondly, the random coupling model (RCM) is introduced from wave chaos theory and statistical method about microwave chaotic cavities. It is simply to use this method to directly obtain the three-dimensional model. Lastly, the three-dimensional Sinai microwave chaotic cavity is designed, and used to carry out the numerical experiment. Their statistical properties obtained are agreed well with one-another between the numerical result and RCM one. Importantly, the RCM, which is a very good method to be able to quickly predict the sensitivity of coupling about the microwave chaotic cavities, is independent of the details of the cavities.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61231003).
    [1]

    Ladbury J M, Lehman T H, Koepke G H 2002 IEEE International Symposium on Electromagnetic Compatibility, Minneapolis, Minnesota, August 19-23, 2002 p684

    [2]

    Jie Q L, Xu G O 1995 Chin. Phys. 4 641

    [3]

    Hemmady S, Hart J, Zheng X, Antonsen T M, Ott E, Anlage S M 2006 Phys. Rev. B 74 036213

    [4]

    Holland R, John R 1998 IEEE Trans. on Electromagnetic Compatibility 40 311

    [5]

    Naus H W L 2008 IEEE Trans. on Electromagnetic Compatibility 50 316

    [6]

    Lehman T H 1993 Interaction Notes: IN 494

    [7]

    Kostas J G, Boverie B 1991 IEEE Trans. On Electromagnetic Compatibility 33 366

    [8]

    Price R H, Davis H T, Wenaas E P 1993 Phys. Rev. E 48 4716

    [9]

    Hill D A. P 1998 IEEE Trans. On Electromagnetic Compatibility 40 209

    [10]

    Hill D A, Ma M T, Ondrejka A R, Riddle B F, Crawford M L, Johnk R T 1994 IEEE Trans. on Electromagnetic Compatibility 36 169

    [11]

    Hill D A 1998 IEEE Trans. On Electromagnetic Compatibility 41 365

    [12]

    Stöckmann H J 1999 Quantum Chaos (New York: Cambridge University Press)

    [13]

    Lu J, Du M L 2004 Acta Phys. Sin. 53 2450 (in Chinese) [陆军, 杜孟利 2004 物理学报 53 2450]

    [14]

    Xu X Y, Gao S, Guo W H, Zhang Y H, Lin S L 2006 Chin. Phys. Lett. 23 765

    [15]

    Zheng X, Antonsen T M, Ott E 2006 Electromagnetics 26 3

    [16]

    Zheng X, Antonsen T M, Ott E 2006 Electromagnetics 26 27

    [17]

    Hemmady S, Zheng X, Hart J, Antonson T M, Ott E, Anlage S M 2006 Phys. Rev. E 74 036213

    [18]

    Hemmady S, Antonson T M, Ott E, Anlage S M 2012 IEEE Trans. On Electromagnetic Compatibility pp 99

    [19]

    Yan E Y, Meng F B, Ma H K 2010 Acta Phys. Sin. 59 1568 (in Chinese) [闫二艳, 孟凡宝, 马弘舸 2010 物理学报 59 1568]

    [20]

    Antonson T M, Gradoni G, Anlage S. Ott E 2011 IEEE EMC Symposium, Long Beach, CA, August 14-19, 2011

    [21]

    Gradoni G, Yeh J-H, Antonson T M, Anlage S. Ott E 2011 IEEE EMC Symposium, Long Beach, CA, August 14-19, 2011

    [22]

    Hart J A, Antonsen T M, Ott E 2009 Phys. Rev. E 79 016208

    [23]

    Hart J A, Antonsen T M, Ott E 2009 Phys. Rev. E 80 041109

    [24]

    Yeh J H, Hart J A, Bradshaw E, Antonsen T M, Ott E, Anlage S M 2010 Phys. Rev. E 82 041114

    [25]

    Yeh J H, Antonsen T M, Ott E, Anlage S M 2012 Phys. Rev. E 85 015202(R)

    [26]

    Li M Y, Hummer K A, Chang K 1991 IEEE Trans. on Antennas and Propagation 39 1158

    [27]

    Warne L K, Lee K S H, Hudson H G, Johnson W A, Jorgenson R E, Stronach S L 2003 IEEE Trans. on Antennas and Propagation 51 978

    [28]

    Jackson J D 1999 Classical Electrodynamics (Third Edition)(John Wiley & Sons. Inc.)

    [29]

    Lu X C, Wang J G, Han F, Liu Y 2011 High Power Laser and Particle Beams 23 2167 (in Chinese) [陆希成, 王建国, 韩峰, 刘钰 2011 强激光与粒子束 23 2167]

    [30]

    Lu X C, Wang J G, Han F, Liu Y 2011 High Power Laser and Particle Beams 23 3367 (in Chinese) [陆希成, 王建国, 韩峰, 刘钰 2011 强激光与粒子束 23 3367]

    [31]

    Mehta M L 2006 Random Matrices (Third Edition) (Singapore: Elsevier (Singapore) Pte Ltd)

  • [1]

    Ladbury J M, Lehman T H, Koepke G H 2002 IEEE International Symposium on Electromagnetic Compatibility, Minneapolis, Minnesota, August 19-23, 2002 p684

    [2]

    Jie Q L, Xu G O 1995 Chin. Phys. 4 641

    [3]

    Hemmady S, Hart J, Zheng X, Antonsen T M, Ott E, Anlage S M 2006 Phys. Rev. B 74 036213

    [4]

    Holland R, John R 1998 IEEE Trans. on Electromagnetic Compatibility 40 311

    [5]

    Naus H W L 2008 IEEE Trans. on Electromagnetic Compatibility 50 316

    [6]

    Lehman T H 1993 Interaction Notes: IN 494

    [7]

    Kostas J G, Boverie B 1991 IEEE Trans. On Electromagnetic Compatibility 33 366

    [8]

    Price R H, Davis H T, Wenaas E P 1993 Phys. Rev. E 48 4716

    [9]

    Hill D A. P 1998 IEEE Trans. On Electromagnetic Compatibility 40 209

    [10]

    Hill D A, Ma M T, Ondrejka A R, Riddle B F, Crawford M L, Johnk R T 1994 IEEE Trans. on Electromagnetic Compatibility 36 169

    [11]

    Hill D A 1998 IEEE Trans. On Electromagnetic Compatibility 41 365

    [12]

    Stöckmann H J 1999 Quantum Chaos (New York: Cambridge University Press)

    [13]

    Lu J, Du M L 2004 Acta Phys. Sin. 53 2450 (in Chinese) [陆军, 杜孟利 2004 物理学报 53 2450]

    [14]

    Xu X Y, Gao S, Guo W H, Zhang Y H, Lin S L 2006 Chin. Phys. Lett. 23 765

    [15]

    Zheng X, Antonsen T M, Ott E 2006 Electromagnetics 26 3

    [16]

    Zheng X, Antonsen T M, Ott E 2006 Electromagnetics 26 27

    [17]

    Hemmady S, Zheng X, Hart J, Antonson T M, Ott E, Anlage S M 2006 Phys. Rev. E 74 036213

    [18]

    Hemmady S, Antonson T M, Ott E, Anlage S M 2012 IEEE Trans. On Electromagnetic Compatibility pp 99

    [19]

    Yan E Y, Meng F B, Ma H K 2010 Acta Phys. Sin. 59 1568 (in Chinese) [闫二艳, 孟凡宝, 马弘舸 2010 物理学报 59 1568]

    [20]

    Antonson T M, Gradoni G, Anlage S. Ott E 2011 IEEE EMC Symposium, Long Beach, CA, August 14-19, 2011

    [21]

    Gradoni G, Yeh J-H, Antonson T M, Anlage S. Ott E 2011 IEEE EMC Symposium, Long Beach, CA, August 14-19, 2011

    [22]

    Hart J A, Antonsen T M, Ott E 2009 Phys. Rev. E 79 016208

    [23]

    Hart J A, Antonsen T M, Ott E 2009 Phys. Rev. E 80 041109

    [24]

    Yeh J H, Hart J A, Bradshaw E, Antonsen T M, Ott E, Anlage S M 2010 Phys. Rev. E 82 041114

    [25]

    Yeh J H, Antonsen T M, Ott E, Anlage S M 2012 Phys. Rev. E 85 015202(R)

    [26]

    Li M Y, Hummer K A, Chang K 1991 IEEE Trans. on Antennas and Propagation 39 1158

    [27]

    Warne L K, Lee K S H, Hudson H G, Johnson W A, Jorgenson R E, Stronach S L 2003 IEEE Trans. on Antennas and Propagation 51 978

    [28]

    Jackson J D 1999 Classical Electrodynamics (Third Edition)(John Wiley & Sons. Inc.)

    [29]

    Lu X C, Wang J G, Han F, Liu Y 2011 High Power Laser and Particle Beams 23 2167 (in Chinese) [陆希成, 王建国, 韩峰, 刘钰 2011 强激光与粒子束 23 2167]

    [30]

    Lu X C, Wang J G, Han F, Liu Y 2011 High Power Laser and Particle Beams 23 3367 (in Chinese) [陆希成, 王建国, 韩峰, 刘钰 2011 强激光与粒子束 23 3367]

    [31]

    Mehta M L 2006 Random Matrices (Third Edition) (Singapore: Elsevier (Singapore) Pte Ltd)

  • [1] The spring oscillator model degenerated into the coupled-mode theory by using secular perturbation theory. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191505
    [2] The influence of the secondary electron emission characteristic of dielectric materials on the microwave breakdown. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20200026
    [3] Zhuang Zhi-Ben, Li Jun, Liu Jing-Yi, Chen Shi-Qiang. Image encryption algorithm based on new five-dimensional multi-ring multi-wing hyperchaotic system. Acta Physica Sinica, 2020, 69(4): 040502. doi: 10.7498/aps.69.20191342
    [4] Diagnosis of capacitively coupled plasma driven by pulse-modulated 27.12 MHz by using an emissive probe. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191864
    [5] Zhang Zhan-Gang, Lei Zhi-Feng, Tong Teng, Li Xiao-Hui, Wang Song-Lin, Liang Tian-Jiao, Xi Kai, Peng Chao, He Yu-Juan, Huang Yun, En Yun-Fei. Comparison of neutron induced single event upsets in 14 nm FinFET and 65 nm planar static random access memory devices. Acta Physica Sinica, 2020, 69(5): 056101. doi: 10.7498/aps.69.20191209
    [6] The physics-based model of AlGaN/GaN high electron mobility transistor outer fringing capacitances. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191931
    [7] Application Research of Ant Colony Cellular Optimization Algorithm in Population Evacuation Path Planning. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191774
  • Citation:
Metrics
  • Abstract views:  755
  • PDF Downloads:  457
  • Cited By: 0
Publishing process
  • Received Date:  19 June 2012
  • Accepted Date:  20 November 2012
  • Published Online:  05 April 2013

Based on antenna theory to establish the random coupling model of microwave chaotic cavities

  • 1. Northwest Institute of Nuclear Technology, Xi’an 710024, China;
  • 2. School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 61231003).

Abstract: To improve the ability of quickly and effectively resolving the coupling of electrically large complex cavities (microwave chaotic cavities), the statistical properties of the scattering from these cavities have been studied by using a statistical electromagnetics method. Firstly, based on the antenna theory, the input impedance expression of cavities is established by using the expanded electromagnetic eigenmode expression. Secondly, the random coupling model (RCM) is introduced from wave chaos theory and statistical method about microwave chaotic cavities. It is simply to use this method to directly obtain the three-dimensional model. Lastly, the three-dimensional Sinai microwave chaotic cavity is designed, and used to carry out the numerical experiment. Their statistical properties obtained are agreed well with one-another between the numerical result and RCM one. Importantly, the RCM, which is a very good method to be able to quickly predict the sensitivity of coupling about the microwave chaotic cavities, is independent of the details of the cavities.

Reference (31)

Catalog

    /

    返回文章
    返回