Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Purity analysis of helium using quartz-enhanced photoacoustic spectroscopy with two non-resonant micro-tubes

Wu Hong-Peng Dong Lei Zheng Hua-Dan Liu Yan-Yan Ma Wei-Guang Zhang Lei Wang Wu-Yi Zhu Qing-Ke Yin Wang-Bao Jia Suo-Tang

Purity analysis of helium using quartz-enhanced photoacoustic spectroscopy with two non-resonant micro-tubes

Wu Hong-Peng, Dong Lei, Zheng Hua-Dan, Liu Yan-Yan, Ma Wei-Guang, Zhang Lei, Wang Wu-Yi, Zhu Qing-Ke, Yin Wang-Bao, Jia Suo-Tang
PDF
Get Citation
  • A trace gas sensor, based on quartz-enhanced photoacoustic spectroscopy (QEPAS) with two non-resonant micro-tubes, was designed to detect the ammonia concentration in impure helium. Unlike the traditional micro-resonator, the non-resonant micro-tubes are used to confine the sound wave, but do not exhibit a well-defined resonant behavior. Such a design makes the dimension of the spectrophone much smaller than the micro-resonant configuration, which facilitates the optical alignment. Signal and noise, that were dependent on gas pressure, were also investigated to optimize sensor performance. With the optimal sensor parameters and the optimal gas pressure, the detection sensitivity was found to be 463 ppb (1 , 1 s averaging time), which corresponds to the normalized absorption sensitivity of 4.310-9cm-1W/Hz.
    • Funds: Project supported by the 973 Program (Grant No. 2012CB921603), the National Natural Science Foundation of China (Grant Nos. 61275213, 61108030, 61127017, 61178009, 60908019和61205216), and the Shanxi Natural Science Foundation, China (Grant Nos. 2010021003-3, 2012021022-1).
    [1]

    Li Z Y, Wang H H, Jiang N, Cheng S L, Zhao L, Yu X 2009 Acta Phys.Sin. 58 3821 (in Chinese) [李政颖, 王洪海, 姜宁, 程松林, 赵磊, 余鑫 2009 物理学报 58 3821]

    [2]

    Liu Z M, Liu W Q, Gao M G, Tong J J, Zhang T S, Xu L, Wei X L 2008 Chin. Phys. B 17 4184

    [3]

    Kosterev A A, Tittel F K, Serebryakov D V, Malinovsky A L, Morozov I V 2005 Rev. Sci. Instrum. 76 043105

    [4]

    Kosterev A A, Bakhirkin Y A, Curl R F, Tittel F K 2002 Opt. Lett. 27 1902

    [5]

    Dong L, Kosterev A A, Thomazy D, Tittel F K 2010 Appl. Phys. B 100 627

    [6]

    Liu K, Guo X, Yi H, Chen W, Zhang W, Gao X 2009 Opt. Lett. 34 1594

    [7]

    Yi H, Liu K, Chen W, Tan T, Wang L, Gao X 2011 Opt. Lett. 36 481

    [8]

    Petra N, Zweck J, Kosterev A A, Minkoff S E, Thomazy D 2009 Appl. Phy. B 94 73

    [9]

    Wang G S, Yi H M, Cai T D, Wang L, Tan T, Zhang W J, Gao X M 2012 Acta Phys. Sin. 61 120701 (in Chinese) [王贵师, 易红明, 蔡廷栋, 汪磊, 谈图, 张为俊, 高晓明 2012 物理学报 61 120701]

    [10]

    Serebryakov D V, Morozov L V, Kosterev A A, Letokhov V S 2010 Quantum Electron 40 167

    [11]

    Engeln R, Berden G, Peeters R, Meijer G 1998 Rev. Sci. Instrum. 69 3763

    [12]

    Jia H, Zhao W X, Cai T D , Chen W D, Zhang W J, Gao X M 2009 ELSEVIER 110 347

    [13]

    Webber M E, Pushkarsky M , Patel C K N 2003 Appl. Opt. 42 2119

    [14]

    Dong L, Zhang L, Dou H P, Ying W B, Jia S T 2008 Chin. Phys. B 17 152

    [15]

    Tittel F K, Kosterev A A 2004 Appl. Opt. 43 6213

    [16]

    Kosterev A A, Bakhirkin Y A, Tittel F K, Mcwhorter S, Ashcraft B 2008 Appl. Phys. B Lasers and Optics 92 103

  • [1]

    Li Z Y, Wang H H, Jiang N, Cheng S L, Zhao L, Yu X 2009 Acta Phys.Sin. 58 3821 (in Chinese) [李政颖, 王洪海, 姜宁, 程松林, 赵磊, 余鑫 2009 物理学报 58 3821]

    [2]

    Liu Z M, Liu W Q, Gao M G, Tong J J, Zhang T S, Xu L, Wei X L 2008 Chin. Phys. B 17 4184

    [3]

    Kosterev A A, Tittel F K, Serebryakov D V, Malinovsky A L, Morozov I V 2005 Rev. Sci. Instrum. 76 043105

    [4]

    Kosterev A A, Bakhirkin Y A, Curl R F, Tittel F K 2002 Opt. Lett. 27 1902

    [5]

    Dong L, Kosterev A A, Thomazy D, Tittel F K 2010 Appl. Phys. B 100 627

    [6]

    Liu K, Guo X, Yi H, Chen W, Zhang W, Gao X 2009 Opt. Lett. 34 1594

    [7]

    Yi H, Liu K, Chen W, Tan T, Wang L, Gao X 2011 Opt. Lett. 36 481

    [8]

    Petra N, Zweck J, Kosterev A A, Minkoff S E, Thomazy D 2009 Appl. Phy. B 94 73

    [9]

    Wang G S, Yi H M, Cai T D, Wang L, Tan T, Zhang W J, Gao X M 2012 Acta Phys. Sin. 61 120701 (in Chinese) [王贵师, 易红明, 蔡廷栋, 汪磊, 谈图, 张为俊, 高晓明 2012 物理学报 61 120701]

    [10]

    Serebryakov D V, Morozov L V, Kosterev A A, Letokhov V S 2010 Quantum Electron 40 167

    [11]

    Engeln R, Berden G, Peeters R, Meijer G 1998 Rev. Sci. Instrum. 69 3763

    [12]

    Jia H, Zhao W X, Cai T D , Chen W D, Zhang W J, Gao X M 2009 ELSEVIER 110 347

    [13]

    Webber M E, Pushkarsky M , Patel C K N 2003 Appl. Opt. 42 2119

    [14]

    Dong L, Zhang L, Dou H P, Ying W B, Jia S T 2008 Chin. Phys. B 17 152

    [15]

    Tittel F K, Kosterev A A 2004 Appl. Opt. 43 6213

    [16]

    Kosterev A A, Bakhirkin Y A, Tittel F K, Mcwhorter S, Ashcraft B 2008 Appl. Phys. B Lasers and Optics 92 103

  • [1] Liu Yan-Yan, Dong Lei, Wu Hong-Peng, Zheng Hua-Dan, Ma Wei-Guang, Zhang Lei, Yin Wang-Bao, Jia Suo-Tang. All optical quartz-enhanced photoacoustic spectroscopy. Acta Physica Sinica, 2013, 62(22): 220701. doi: 10.7498/aps.62.220701
    [2] Yin Xu-Kun, Zheng Hua-Dan, Dong Lei, Wu Hong-Peng, Liu Xiao-Li, Ma Wei-Guang, Zhang Lei, Yin Wang-Bao, Jia Suo-Tang. Design and optimization of off-beam NO2 QEPAS sensor by use of E-MOCAM with a high power blue laser diode. Acta Physica Sinica, 2015, 64(13): 130701. doi: 10.7498/aps.64.130701
    [3] Ma Yu-Fei, He Ying, Yu Xin, Yu Guang, Zhang Jing-Bo, Sun Rui. Research on high sensitivity detection of carbon monoxide based on quantum cascade laser and quartz-enhanced photoacoustic spectroscopy. Acta Physica Sinica, 2016, 65(6): 060701. doi: 10.7498/aps.65.060701
    [4] He Ying, Ma Yu-Fei, Tong Yao, Peng Zhen-Fang, Yu Xin. Fiber evanescent wave quartz-enhanced photoacoustic spectroscopy. Acta Physica Sinica, 2018, 67(2): 020701. doi: 10.7498/aps.67.20171881
    [5] Zhao Yan-Dong, Fang Yong-Hua, Li Yang-Yu, Wu Jun, Li Da-Cheng, Cui Fang-Xiao, Liu Jia-Xiang, Wang An-Jing. Theoretical research on quartz enhanced photoacoustic spectroscopy base on the resonance in an elliptical cavity. Acta Physica Sinica, 2016, 65(19): 190701. doi: 10.7498/aps.65.190701
    [6] Sun Xiao-Liang, Chen Chang-Hong, Meng De-Jia, Feng Shi-Gao, Yu Hong-Hao. Split modes of composite metal grating and its application for high performance gas sensor. Acta Physica Sinica, 2015, 64(14): 147302. doi: 10.7498/aps.64.147302
    [7] Ai Wen, Hu Xiao-Hui, Pan Lin, Chen Chang-Chun, Wang Yi-Feng, Shen Xiao-Dong. Sensing performance of two-dimensional WTe2-based gas sensors. Acta Physica Sinica, 2019, 68(19): 197101. doi: 10.7498/aps.68.20190642
    [8] Miao Yin-Ping, Jin Wei, Yang Fan, Lin Yue-Chuan, Tan Yan-Zhen, Hoi Lut. Advances in optical fiber photothermal interferometry for gas detection. Acta Physica Sinica, 2017, 66(7): 074212. doi: 10.7498/aps.66.074212
    [9] Qin Yu-Xiang, Wang Fei, Shen Wan-Jiang, Hu Ming. Room temperature NO2-sensing properties and mechanism of the sensors based on tungsten oxide nanowires/single-wall carbon nanotubes composites. Acta Physica Sinica, 2012, 61(5): 057301. doi: 10.7498/aps.61.057301
    [10] Zhang Xiao-Xing, Meng Fan-Sheng, Tang Ju, Yang Bing. DFT calculations on the adsorption of component SF6 decomposed under partial discharge onto carbon nanotubes modified by -OH. Acta Physica Sinica, 2012, 61(15): 156101. doi: 10.7498/aps.61.156101
  • Citation:
Metrics
  • Abstract views:  716
  • PDF Downloads:  595
  • Cited By: 0
Publishing process
  • Received Date:  06 November 2012
  • Accepted Date:  22 November 2012
  • Published Online:  05 April 2013

Purity analysis of helium using quartz-enhanced photoacoustic spectroscopy with two non-resonant micro-tubes

  • 1. State Key Laboratory of Quantum Optics and Quantum Optics Devices, Lab for Laser Spectroscopy, Shanxi University, Taiyuan 030006, China;
  • 2. Shanxi Institute of Metrology, Taiyuan 030006, China
Fund Project:  Project supported by the 973 Program (Grant No. 2012CB921603), the National Natural Science Foundation of China (Grant Nos. 61275213, 61108030, 61127017, 61178009, 60908019和61205216), and the Shanxi Natural Science Foundation, China (Grant Nos. 2010021003-3, 2012021022-1).

Abstract: A trace gas sensor, based on quartz-enhanced photoacoustic spectroscopy (QEPAS) with two non-resonant micro-tubes, was designed to detect the ammonia concentration in impure helium. Unlike the traditional micro-resonator, the non-resonant micro-tubes are used to confine the sound wave, but do not exhibit a well-defined resonant behavior. Such a design makes the dimension of the spectrophone much smaller than the micro-resonant configuration, which facilitates the optical alignment. Signal and noise, that were dependent on gas pressure, were also investigated to optimize sensor performance. With the optimal sensor parameters and the optimal gas pressure, the detection sensitivity was found to be 463 ppb (1 , 1 s averaging time), which corresponds to the normalized absorption sensitivity of 4.310-9cm-1W/Hz.

Reference (16)

Catalog

    /

    返回文章
    返回