Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Isolated 38 as pulse generation from two-color pulse

Chen Gao Yang Yu-Jun Guo Fu-Ming

Isolated 38 as pulse generation from two-color pulse

Chen Gao, Yang Yu-Jun, Guo Fu-Ming
PDF
Get Citation
  • We have investigated theoretically the high-order harmonics and attosecond pulse generation by numerically solving the one-dimensional time-dependent Schrödinger equation from a helium atom in a two-color laser field, which is synthesized by adding a 1330-nm infrared pulse with higher intensity to an 800-nm fundamental pulse with lower intensity. Our results clearly show that if the phase difference between the two pulses is selected suitably, the generation of high-order harmonics spectrum with a broadband supercontinuum characteristic can be achieved, and an isolated 38 as pulse can be realized. By the time-frequency analysis, we find that the isolated attosecond pulse comes from the contribution of the long and short quantum paths, and for these two quantum paths the change of emission time with the harmonics order is rather slow. This is different from the traditional isolated attosecond pulse generation that a single quantum path needs to be picked up to obtain an isolated attosecond pulse.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 10604021).
    [1]

    Hentschel M, Kienberger R, Spielmann Ch, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 414 509

    [2]

    Drescher M, Hentschel M, Drescher M, Kienberger R, Tempea G, Spielmann C, Reider G A, CorkumP B, Krausz F 2001 Science 291 1923

    [3]

    Drescher M, Hentschel M, Kienberger R, Uiberacker M, Yakovlev V, Scrinzi A, Westerwalbesloh T H, Kleineberg U, Heinzmann U, Krausz F 2002 Nature 419 803

    [4]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994

    [5]

    Bartels R A, Paul A, Green H, Kapteyn H C, Mumane M M, Backus S, Christov I P, Liu Y, Attwood D, Jacobsen C 2002 Science 297 376

    [6]

    Paul P M, Toma E S, Breger P, Mullot G, Auge F, Balcou Ph, Muller H G, Agostini P 2001 Science 292 1689

    [7]

    Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R, Krausz F, Kleineberg U 2008 Science 320 1614

    [8]

    Hong W Y, Zhang Q B, Yang Z Y, Lu P X 2009 Phys. Rev. A 80, 053407

    [9]

    Liu I L, Li P C, Chu Shih-I 2011 Phys. Rev. A 84 033414

    [10]

    Chen J G, Zeng S L, Yang Y J 2010 Phys. Rev. A 82 043401

    [11]

    Chen J G, Yang Y J, Yu X P, He L J, Xu Y Y 2011 Acta Phys. Sin. 60 053206 (in Chinese) [陈基根, 杨玉军, 俞旭萍, 何龙君, 徐圆圆 2011 物理学报 60 053206]

    [12]

    Chen J G, Yang Y J, Chen Y 2011 Acta Phys. Sin. 60 033202 (in Chinese) [陈基根, 杨玉军, 陈漾 2011 物理学报 60 033202]

    [13]

    Liu S, Chen G, Chen J G, Zhu Q R 2009 Acta Phys. Sin. 58 1574 (in Chinese) [刘硕, 陈高, 陈基根, 朱颀人 2009 物理学报 58 1574]

    [14]

    Eberly J H, Su Q, Javanainen J 1989 Phys. Rev. Lett. 62 881

  • [1]

    Hentschel M, Kienberger R, Spielmann Ch, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 414 509

    [2]

    Drescher M, Hentschel M, Drescher M, Kienberger R, Tempea G, Spielmann C, Reider G A, CorkumP B, Krausz F 2001 Science 291 1923

    [3]

    Drescher M, Hentschel M, Kienberger R, Uiberacker M, Yakovlev V, Scrinzi A, Westerwalbesloh T H, Kleineberg U, Heinzmann U, Krausz F 2002 Nature 419 803

    [4]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994

    [5]

    Bartels R A, Paul A, Green H, Kapteyn H C, Mumane M M, Backus S, Christov I P, Liu Y, Attwood D, Jacobsen C 2002 Science 297 376

    [6]

    Paul P M, Toma E S, Breger P, Mullot G, Auge F, Balcou Ph, Muller H G, Agostini P 2001 Science 292 1689

    [7]

    Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R, Krausz F, Kleineberg U 2008 Science 320 1614

    [8]

    Hong W Y, Zhang Q B, Yang Z Y, Lu P X 2009 Phys. Rev. A 80, 053407

    [9]

    Liu I L, Li P C, Chu Shih-I 2011 Phys. Rev. A 84 033414

    [10]

    Chen J G, Zeng S L, Yang Y J 2010 Phys. Rev. A 82 043401

    [11]

    Chen J G, Yang Y J, Yu X P, He L J, Xu Y Y 2011 Acta Phys. Sin. 60 053206 (in Chinese) [陈基根, 杨玉军, 俞旭萍, 何龙君, 徐圆圆 2011 物理学报 60 053206]

    [12]

    Chen J G, Yang Y J, Chen Y 2011 Acta Phys. Sin. 60 033202 (in Chinese) [陈基根, 杨玉军, 陈漾 2011 物理学报 60 033202]

    [13]

    Liu S, Chen G, Chen J G, Zhu Q R 2009 Acta Phys. Sin. 58 1574 (in Chinese) [刘硕, 陈高, 陈基根, 朱颀人 2009 物理学报 58 1574]

    [14]

    Eberly J H, Su Q, Javanainen J 1989 Phys. Rev. Lett. 62 881

  • [1] Chen Ji-Gen, Zeng Si-Liang, Yang Yu-Jun, Cheng Chao. Isolated intense sub-30-as pulse generation by quantum path control in the three-color laser pulse. Acta Physica Sinica, 2012, 61(12): 123201. doi: 10.7498/aps.61.123201
    [2] Cao Wei, Lan Peng-Fei, Lu Pei-Xiang. Proposal for single attosecond pulse production with a 43 fs super intense laser pulse. Acta Physica Sinica, 2007, 56(3): 1608-1612. doi: 10.7498/aps.56.1608
    [3] Ye Xiao-Liang, Zhao Song-Feng, Li Peng-Cheng, Zhou Xiao-Xin. The single attosecond pulse generated by atom exposed to two-color combined laser field. Acta Physica Sinica, 2009, 58(3): 1579-1585. doi: 10.7498/aps.58.1579
    [4] Pan Hui-Ling, Li Peng-Cheng, Zhou Xiao-Xin. Single attosecond pulse generated by atom exposed to two laser pulses with the same color and half cycle pulses. Acta Physica Sinica, 2011, 60(4): 043203. doi: 10.7498/aps.60.043203
    [5] Chen Ji-Gen, Chen Yang, Yang Yu-Jun. Isolated intense 39 attosecond pulse generatedby adding a harmonic pulse. Acta Physica Sinica, 2011, 60(3): 033202. doi: 10.7498/aps.60.033202
    [6] Lü Xiao-Yuan, Zhu Ruo-Bi, Song Hao, Su Ning, Chen Gao. Isolated attosecond pulse generation from a double optical gating scheme based on orthogonal polarization field. Acta Physica Sinica, 2019, 68(21): 214201. doi: 10.7498/aps.68.20190847
    [7] Hong Wei-Yi, Yang Zhen-Yu, Lan Peng-Fei, Zhang Qing-Bin, Li Qian-Guang, Lu Pei-Xiang. Generating isolated broadband attosecond pulses with stable pulse duration in a non-colinear polarized two-color field. Acta Physica Sinica, 2009, 58(7): 4914-4919. doi: 10.7498/aps.58.4914
    [8] Hong Wei-Yi, Yang Zhen-Yu, Lan Peng-Fei, Lu Pei-Xiang. Direct generation of isolated sub-50 attosecond pulse via controlling quantum paths by a low frequency field. Acta Physica Sinica, 2008, 57(9): 5853-5858. doi: 10.7498/aps.57.5853
    [9] Li Wei, Wang Guo-Li, Zhou Xiao-Xin. Single attosecond pulse generated by model helium atom exposed to the combined field of an intense few-cycle chirped laser pulse and a half cycle pulse. Acta Physica Sinica, 2011, 60(12): 123201. doi: 10.7498/aps.60.123201
    [10] Zhang Qing-Bin, Hong Wei-Yi, Lan Peng-Fei, Yang Zhen-Yu, Lu Pei-Xiang. Control of attosecond pulse generation with modulated polarization gating. Acta Physica Sinica, 2008, 57(12): 7848-7854. doi: 10.7498/aps.57.7848
  • Citation:
Metrics
  • Abstract views:  567
  • PDF Downloads:  630
  • Cited By: 0
Publishing process
  • Received Date:  06 October 2012
  • Accepted Date:  11 December 2012
  • Published Online:  05 April 2013

Isolated 38 as pulse generation from two-color pulse

  • 1. College of Science, Changchun University of Science and Technology, Changchun 130022, China;
  • 2. Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 10604021).

Abstract: We have investigated theoretically the high-order harmonics and attosecond pulse generation by numerically solving the one-dimensional time-dependent Schrödinger equation from a helium atom in a two-color laser field, which is synthesized by adding a 1330-nm infrared pulse with higher intensity to an 800-nm fundamental pulse with lower intensity. Our results clearly show that if the phase difference between the two pulses is selected suitably, the generation of high-order harmonics spectrum with a broadband supercontinuum characteristic can be achieved, and an isolated 38 as pulse can be realized. By the time-frequency analysis, we find that the isolated attosecond pulse comes from the contribution of the long and short quantum paths, and for these two quantum paths the change of emission time with the harmonics order is rather slow. This is different from the traditional isolated attosecond pulse generation that a single quantum path needs to be picked up to obtain an isolated attosecond pulse.

Reference (14)

Catalog

    /

    返回文章
    返回