Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Entanglement and quantum discord in a double J-C model with intensity-dependent coupling

Hu Yao-Hua Tan Yong-Gang Liu Qiang

Entanglement and quantum discord in a double J-C model with intensity-dependent coupling

Hu Yao-Hua, Tan Yong-Gang, Liu Qiang
PDF
Get Citation
  • Considering a double J-C model with intensity-dependent coupling, we have studied the effects of the intensity-dependent coupling, the mean photon numbers and the atomic motion, on the entanglement and quantum discord between the two two-level atoms when the moving atoms are initially in a maximally entangled state and the fields are in the single-mode thermal fields. The results show that, the entanglement and quantum discord disappear and revive periodically, and can have up to their starting values after revival. A rise in cavity temperature accelerates the death of the entanglement and quantum discord. In addition, the field-mode structural parameter has a strong effect on the entanglement and quantum discord in the system. When the field-mode structural parameter takes a suitable value, the entanglement and quantum discord of the two atoms can be kept from start to finish.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 10905028), the NSFC-Henan Talent Development Joint Fund (Grant No. U1204616), and the Program for the Fundamental and Frontier Technology Research of Henan Province, China (Grant No. 102300410050)
    [1]

    Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge University Press: Cambridge)

    [2]

    Briegel H J, Drr W, Cirac J I, Zoller P 1998 Phys. Rev. Lett. 81 5932

    [3]

    Rosenfeld W, Hocke F, Henkel F, Krug M, Volz J, Weber M, Weinfurter H 2008 Phys. Rev. Lett. 101 260403

    [4]

    Yu T, Eberly J H 2004 Phys. Rev. Lett. 93 140404

    [5]

    Yönac M, Eberly J H 2008 Opt. Lett. 33 270

    [6]

    Lettner M, Mcke M, Riedl S, Vo C, Hahn C, Baur S, Bochmann J, Ritter S, Drr S, Rempe G 2011 Phys. Rev. Lett. 106 210503

    [7]

    Yönac M, Eberly J H 2010 Phys. Rev. A 82 022321

    [8]

    Man Z X, Xia Y J, An N B 2012 Phys. Rev. A 86 012325

    [9]

    Lu D M 2012 Acta Phys. Sin. 61 180301 (in Chinese) [卢道明 2012 物理学报 61 180301]

    [10]

    Jaynes E T, Cummings F W 1963 Proc IEEE 51 89

    [11]

    Buck B, Sukumar C V 1981 Phys. Lett. A 81 132

    [12]

    Barzanjeh Sh, Naderi M H, Soltanolkotabi M 2011 Phys. Rev. A 84 063850

    [13]

    Liu X J, Zhou B J, Liu Y M, Jiang C L 2012 Acta Phys. Sin. 61 230301 (in Chinese) [刘小娟, 周并举, 刘一曼, 姜春蕾 2012 物理学报 61 230301]

    [14]

    El-Orany Faisal A A 2006 J. Mod. Opt. 53 1699

    [15]

    Xiong H N, Guo H 2007 Chin. Phys. Lett. 24 1805

    [16]

    Dakic B, Vedral V, Brukner C 2010 Phys. Rev. Lett. 105 190502

    [17]

    Knill E, Laflamme R 1998 Phys. Rev. Lett. 81 5672

    [18]

    Bihama E, Brassardb G, Kenigsberga D, Mor T 2004 Theor. Comput. Sci. 320 15

    [19]

    Ollivier H, Zurek W H 2001 Phys. Rev. Lett. 88 017901

    [20]

    Lanyon B P, Barbieri M, Almeida M P, White A G 2008 Phys. Rev. Lett. 101 200501

    [21]

    Datta A, Shaji A, Caves Carlton M 2008 Phys. Rev. Lett. 100 050502

    [22]

    Cui J, Fan H 2010 J. Phys. A: Math. Theor. 43 045305

    [23]

    Allegra M, Giorda P, Montorsi A 2011 Phys. Rev. B 84 245133

    [24]

    Xu J W, Chen Q H 2012 Chin. Phys. B 21 040302

    [25]

    Man Z X, Xia Y J, An N B 2011 J. Phys. B 44 095504

    [26]

    Blandino R, Genoni M G, Etesse J, Barbieri M, Paris M G A, Grangier P, Tualle-Brouri R 2012 Phys. Rev. Lett. 109 180402

    [27]

    Schlicher R R 1989 Opt. Commum. 70 97

    [28]

    Wootters W K 1998 Phys. Rev. Lett. 80 2245

    [29]

    Hill S 1997 Phys. Rev. Lett. 78 5022

    [30]

    Vedral V 2002 Rev. Mod. Phys. 74 197

    [31]

    Henderson L, Vedral V 2001 J. Phys. A 34 6899

  • [1]

    Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge University Press: Cambridge)

    [2]

    Briegel H J, Drr W, Cirac J I, Zoller P 1998 Phys. Rev. Lett. 81 5932

    [3]

    Rosenfeld W, Hocke F, Henkel F, Krug M, Volz J, Weber M, Weinfurter H 2008 Phys. Rev. Lett. 101 260403

    [4]

    Yu T, Eberly J H 2004 Phys. Rev. Lett. 93 140404

    [5]

    Yönac M, Eberly J H 2008 Opt. Lett. 33 270

    [6]

    Lettner M, Mcke M, Riedl S, Vo C, Hahn C, Baur S, Bochmann J, Ritter S, Drr S, Rempe G 2011 Phys. Rev. Lett. 106 210503

    [7]

    Yönac M, Eberly J H 2010 Phys. Rev. A 82 022321

    [8]

    Man Z X, Xia Y J, An N B 2012 Phys. Rev. A 86 012325

    [9]

    Lu D M 2012 Acta Phys. Sin. 61 180301 (in Chinese) [卢道明 2012 物理学报 61 180301]

    [10]

    Jaynes E T, Cummings F W 1963 Proc IEEE 51 89

    [11]

    Buck B, Sukumar C V 1981 Phys. Lett. A 81 132

    [12]

    Barzanjeh Sh, Naderi M H, Soltanolkotabi M 2011 Phys. Rev. A 84 063850

    [13]

    Liu X J, Zhou B J, Liu Y M, Jiang C L 2012 Acta Phys. Sin. 61 230301 (in Chinese) [刘小娟, 周并举, 刘一曼, 姜春蕾 2012 物理学报 61 230301]

    [14]

    El-Orany Faisal A A 2006 J. Mod. Opt. 53 1699

    [15]

    Xiong H N, Guo H 2007 Chin. Phys. Lett. 24 1805

    [16]

    Dakic B, Vedral V, Brukner C 2010 Phys. Rev. Lett. 105 190502

    [17]

    Knill E, Laflamme R 1998 Phys. Rev. Lett. 81 5672

    [18]

    Bihama E, Brassardb G, Kenigsberga D, Mor T 2004 Theor. Comput. Sci. 320 15

    [19]

    Ollivier H, Zurek W H 2001 Phys. Rev. Lett. 88 017901

    [20]

    Lanyon B P, Barbieri M, Almeida M P, White A G 2008 Phys. Rev. Lett. 101 200501

    [21]

    Datta A, Shaji A, Caves Carlton M 2008 Phys. Rev. Lett. 100 050502

    [22]

    Cui J, Fan H 2010 J. Phys. A: Math. Theor. 43 045305

    [23]

    Allegra M, Giorda P, Montorsi A 2011 Phys. Rev. B 84 245133

    [24]

    Xu J W, Chen Q H 2012 Chin. Phys. B 21 040302

    [25]

    Man Z X, Xia Y J, An N B 2011 J. Phys. B 44 095504

    [26]

    Blandino R, Genoni M G, Etesse J, Barbieri M, Paris M G A, Grangier P, Tualle-Brouri R 2012 Phys. Rev. Lett. 109 180402

    [27]

    Schlicher R R 1989 Opt. Commum. 70 97

    [28]

    Wootters W K 1998 Phys. Rev. Lett. 80 2245

    [29]

    Hill S 1997 Phys. Rev. Lett. 78 5022

    [30]

    Vedral V 2002 Rev. Mod. Phys. 74 197

    [31]

    Henderson L, Vedral V 2001 J. Phys. A 34 6899

  • [1] The spring oscillator model degenerated into the coupled-mode theory by using secular perturbation theory. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191505
    [2] Current Phases in Hofstadter Ladder with Staggered Hopping. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191964
    [3] Huang Yong-Feng, Cao Huai-Xin, Wang Wen-Hua. Conjugate linear symmetry and its application to \begin{document}$ {\mathcal{P}}{\mathcal{T}} $\end{document}-symmetry quantum theory. Acta Physica Sinica, 2020, 69(3): 030301. doi: 10.7498/aps.69.20191173
    [4] Diagnosis of capacitively coupled plasma driven by pulse-modulated 27.12 MHz by using an emissive probe. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191864
    [5] Identifying two different configurations of the H32+ by the direct above-threshold ionization spectrum in two-color laser field. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20200013
    [6] The physics-based model of AlGaN/GaN high electron mobility transistor outer fringing capacitances. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191931
    [7] Application Research of Ant Colony Cellular Optimization Algorithm in Population Evacuation Path Planning. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191774
    [8] Zhang Meng, Yao Ruo-He, Liu Yu-Rong. A channel thermal noise model of nanoscaled metal-oxide-semiconductor field-effect transistor. Acta Physica Sinica, 2020, 69(5): 057101. doi: 10.7498/aps.69.20191512
  • Citation:
Metrics
  • Abstract views:  965
  • PDF Downloads:  513
  • Cited By: 0
Publishing process
  • Received Date:  08 November 2012
  • Accepted Date:  30 November 2012
  • Published Online:  05 April 2013

Entanglement and quantum discord in a double J-C model with intensity-dependent coupling

  • 1. Physics and Electronic Information College, Luoyang Normal University, Luoyang 471022, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 10905028), the NSFC-Henan Talent Development Joint Fund (Grant No. U1204616), and the Program for the Fundamental and Frontier Technology Research of Henan Province, China (Grant No. 102300410050)

Abstract: Considering a double J-C model with intensity-dependent coupling, we have studied the effects of the intensity-dependent coupling, the mean photon numbers and the atomic motion, on the entanglement and quantum discord between the two two-level atoms when the moving atoms are initially in a maximally entangled state and the fields are in the single-mode thermal fields. The results show that, the entanglement and quantum discord disappear and revive periodically, and can have up to their starting values after revival. A rise in cavity temperature accelerates the death of the entanglement and quantum discord. In addition, the field-mode structural parameter has a strong effect on the entanglement and quantum discord in the system. When the field-mode structural parameter takes a suitable value, the entanglement and quantum discord of the two atoms can be kept from start to finish.

Reference (31)

Catalog

    /

    返回文章
    返回