Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Investigation on integral model of heat-pipe-cooled leading edge of hypersonic vehicle

Sun Jian Liu Wei-Qiang

Investigation on integral model of heat-pipe-cooled leading edge of hypersonic vehicle

Sun Jian, Liu Wei-Qiang
PDF
Get Citation
  • The structure of leading edge embedded high temperature heat-pipe (HTHP) is considered as thermal protection system to prevent hypersonic vehicle's leading edge that requires sharp figure during hypersonic flying from the serious aerodynamic heating. Under the complex flow and heat transfer condition of the heat pipe, the model of leading edge embedded HTHP is established. In contrast with experimental results, the model of heat pipe which is a core component of leading edge embedded HTHP has good accuracy. Using a numerical method, we analyze the thermal protection effect of leading edge embedded HTHP under the given condition. The maximum temperature of leading edge can be decreased by 11.6% and the minimum temperature of the leading edge increases by 8%. Both high temperature areas and low temperature areas are closed in the outer zone of the leading edge. While the temperature distribution of the inner zone is almost uniform, the heat transfer from high temperature areas to low areas is achieved. Thus the thermal load in high temperature areas is reduced. The influence of contact thermal resistance on the thermal protection effect of heat-pipe cooled leading edge is also studied.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 90916018), and the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 200899980006).
    [1]

    Sun J, Liu W Q 2012 Acta Phys. Sin. 61 124401 [孙健, 刘伟强 2012 物理学报 61 124401

    [2]

    Silverstein C C 1971 NASA CR-1971-1857

    [3]

    Niblock G A, Reeder J C, Huneidi F 1974 J. Spacecraft Rockets Rockets 11 314

    [4]

    Anon 1972 NASA CR-1972-123912

    [5]

    Peeples M E, Reeder J C, Sontag K E T 1979 NASA CR-1979-159096

    [6]

    Boman B L, Citrin E C, Garner E C, Stone J E 1990 NASA CR-1990-181922

    [7]

    Clark L T, Glenn G S 1998 AIAA-88-2679

    [8]

    Glass D E, Merrigan M A, Sena J T 1998 NASA CR-1998-207642

    [9]

    Chen L Z, Ou D B, Liu D Y 2009 Frontier Sci. 2 41 (in Chinese) [陈连忠, 欧东斌, 刘德英 2009 前沿科学 2 41]

    [10]

    Liu D H, Shang X C 2012 Acta Aeron. Astron. Sin. 33 (in press) (in Chinese) [刘冬欢, 尚新春 2012 航空学报 33 (in press)]

    [11]

    Zhuang J, Xu T M, Shi S C 1989 Heat Pipe and Heat Pipe Heat Exchanger (Shanghai: Shanghai Jiaotong University Press) p53 (in Chinese) [庄骏, 徐通明, 石寿椿 1989 热管与热管换热器 (上海: 上海交通大学出版社) 第53页]

    [12]

    Faghri A 1995 Heat pipe science and technology (USA: Taylor & Francis) p159

    [13]

    Chai B H, Du W K, Wei G F, Feng B, Bi K M 2010 A-Energy Sci. Tech. 4 53 (in Chinese) [柴宝华, 杜文开, 卫光仁, 魏国锋, 冯波, 毕可明 2010 原子能科学技术 4 53 ]

    [14]

    Jiang G Q, Ai B C, Yu J J, Chen L Z 2008 11th Countrywide Heat Pipe Conference Weihai September 7-11 72 (in Chinese) [姜贵庆, 艾邦成, 俞继军, 陈连忠 2008 第十一届全国热管会议 威海9月7日-11日72]

  • [1]

    Sun J, Liu W Q 2012 Acta Phys. Sin. 61 124401 [孙健, 刘伟强 2012 物理学报 61 124401

    [2]

    Silverstein C C 1971 NASA CR-1971-1857

    [3]

    Niblock G A, Reeder J C, Huneidi F 1974 J. Spacecraft Rockets Rockets 11 314

    [4]

    Anon 1972 NASA CR-1972-123912

    [5]

    Peeples M E, Reeder J C, Sontag K E T 1979 NASA CR-1979-159096

    [6]

    Boman B L, Citrin E C, Garner E C, Stone J E 1990 NASA CR-1990-181922

    [7]

    Clark L T, Glenn G S 1998 AIAA-88-2679

    [8]

    Glass D E, Merrigan M A, Sena J T 1998 NASA CR-1998-207642

    [9]

    Chen L Z, Ou D B, Liu D Y 2009 Frontier Sci. 2 41 (in Chinese) [陈连忠, 欧东斌, 刘德英 2009 前沿科学 2 41]

    [10]

    Liu D H, Shang X C 2012 Acta Aeron. Astron. Sin. 33 (in press) (in Chinese) [刘冬欢, 尚新春 2012 航空学报 33 (in press)]

    [11]

    Zhuang J, Xu T M, Shi S C 1989 Heat Pipe and Heat Pipe Heat Exchanger (Shanghai: Shanghai Jiaotong University Press) p53 (in Chinese) [庄骏, 徐通明, 石寿椿 1989 热管与热管换热器 (上海: 上海交通大学出版社) 第53页]

    [12]

    Faghri A 1995 Heat pipe science and technology (USA: Taylor & Francis) p159

    [13]

    Chai B H, Du W K, Wei G F, Feng B, Bi K M 2010 A-Energy Sci. Tech. 4 53 (in Chinese) [柴宝华, 杜文开, 卫光仁, 魏国锋, 冯波, 毕可明 2010 原子能科学技术 4 53 ]

    [14]

    Jiang G Q, Ai B C, Yu J J, Chen L Z 2008 11th Countrywide Heat Pipe Conference Weihai September 7-11 72 (in Chinese) [姜贵庆, 艾邦成, 俞继军, 陈连忠 2008 第十一届全国热管会议 威海9月7日-11日72]

  • [1] Sun Jian, Liu Wei-Qiang. Experimental investigation of dredging thermal protection system of hypersonic vehicle leading edge. Acta Physica Sinica, 2014, 63(9): 094401. doi: 10.7498/aps.63.094401
    [2] Sun Jian, Liu Wei-Qiang. Analysis of thermal protection mechanism of leading structure embedded high directional thermal conductivity layer. Acta Physica Sinica, 2012, 61(12): 124401. doi: 10.7498/aps.61.124401
    [3] Sun Jian, Liu Wei-Qiang. Application of leading structure on thermal protection of nosetip. Acta Physica Sinica, 2012, 61(17): 174401. doi: 10.7498/aps.61.174401
    [4] Nie Tao, Liu Wei-Qiang. Study of coupled fluid and solid for a hypersonic lending edge. Acta Physica Sinica, 2012, 61(18): 184401. doi: 10.7498/aps.61.184401
    [5] Lu Hai-Bo, Liu Wei-Qiang. Cooling efficiency investigation of forward-facing cavity and opposing jet combinatorial thermal protection system. Acta Physica Sinica, 2012, 61(6): 064703. doi: 10.7498/aps.61.064703
    [6] Li Kai, Liu Wei-Qiang. Analysis of the magnetohydrodynamic heat shield system for hypersonic vehicles. Acta Physica Sinica, 2016, 65(6): 064701. doi: 10.7498/aps.65.064701
    [7] Li Kai, Liu Jun, Liu Wei-Qiang. Numerical solution procedure for Hall electric field of the hypersonic magnetohydrodynamic heat shield system. Acta Physica Sinica, 2017, 66(8): 084702. doi: 10.7498/aps.66.084702
    [8] Li Kai, Liu Jun, Liu Wei-Qiang. Investigation of Hall effect on the performance of magnetohydrodynamic heat shield system based on variable uniform Hall parameter model. Acta Physica Sinica, 2017, 66(5): 054701. doi: 10.7498/aps.66.054701
    [9] Yan Xiong-Wei, Yu Hai-Wu, Zheng Jian-Gang, Li Ming-Zhong, Jiang Xin-Ying, Duan Wen-Tao, Cao Ding-Xiang, Wang Ming-Zhe, Shang Xiao-Tong, Zhang Yong-Liang. Thermal-management of grad-doping Yb ∶YAG repetitive-rate laser. Acta Physica Sinica, 2011, 60(4): 047801. doi: 10.7498/aps.60.047801
    [10] Sun Jian, Liu Wei-Qiang. Research on convective cooling effect of leading edge platelet of airfoil. Acta Physica Sinica, 2012, 61(12): 124701. doi: 10.7498/aps.61.124701
  • Citation:
Metrics
  • Abstract views:  766
  • PDF Downloads:  501
  • Cited By: 0
Publishing process
  • Received Date:  05 November 2012
  • Accepted Date:  03 December 2012
  • Published Online:  05 April 2013

Investigation on integral model of heat-pipe-cooled leading edge of hypersonic vehicle

  • 1. Science and Technology on Scramjet Laboratory, National University of Defense Technology, Changsha 410073, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 90916018), and the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 200899980006).

Abstract: The structure of leading edge embedded high temperature heat-pipe (HTHP) is considered as thermal protection system to prevent hypersonic vehicle's leading edge that requires sharp figure during hypersonic flying from the serious aerodynamic heating. Under the complex flow and heat transfer condition of the heat pipe, the model of leading edge embedded HTHP is established. In contrast with experimental results, the model of heat pipe which is a core component of leading edge embedded HTHP has good accuracy. Using a numerical method, we analyze the thermal protection effect of leading edge embedded HTHP under the given condition. The maximum temperature of leading edge can be decreased by 11.6% and the minimum temperature of the leading edge increases by 8%. Both high temperature areas and low temperature areas are closed in the outer zone of the leading edge. While the temperature distribution of the inner zone is almost uniform, the heat transfer from high temperature areas to low areas is achieved. Thus the thermal load in high temperature areas is reduced. The influence of contact thermal resistance on the thermal protection effect of heat-pipe cooled leading edge is also studied.

Reference (14)

Catalog

    /

    返回文章
    返回