Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical analysis and numerical calculation of mode conversion efficiency of fast wave

Lu Ling Zhang Xin-Jun Zhao Yan-Ping Qin Cheng-Ming

Theoretical analysis and numerical calculation of mode conversion efficiency of fast wave

Lu Ling, Zhang Xin-Jun, Zhao Yan-Ping, Qin Cheng-Ming
PDF
Get Citation
  • By considering the effect of high-field-side cutoff, the conventional Budden model has been extended to Triplet model. In this model, the reflection coefficient, transmission coefficient and mode conversion (MC) coefficient of the fast wave for a single evanescence region can be derived through using phase-integral method. Furthermore, numerical calculation of MC coefficient for double-ion species and three-ion species have been done. In the case of double ions, the result is consistent with Kazakov's work. In addition, as an example of three ions plasma, (H, 3He)D plasma in tokamak EAST, simulations of the dependence of the MC efficiency on the magnetic field, microwave frequency and minority concentration for different antenna phasings are carried out. The results show how to choose proper phasing to reach an optimum MC efficiency. This result may provide a reference to improve ICRF heating efficiency.
    • Funds: Project supported by the National Special Fund for Magnetically Confined Nuclear Fusion Energy (Grant No. 2010GB110000), the National Natural Science Foundation of China (Grant Nos. 11105179, 11075182), and the Main Direction Program of Knowledge Innovation of Chinese Academy of Sciences (Grant No. Y05FCQ1126).
    [1]

    Shi B R 1999 Magnetic Confinement Fusion Principles and Practice (1st Edn.) (Beijing: Atomic Energy Press) p198 (in Chinese) [石秉仁 1999 磁约束聚变原理与实践 1 st (北京: 原子能出版社) p198]

    [2]

    Perkins F W 1977 Nucl. Fusion 17 1197

    [3]

    Shen X M, Wang Z S, Shao Y G, Xue D Y, Ding J Y, Xu D Z, Wu C Z, Deng X, Wang J, Wang Y M, Li Y Y, HT-6M team 1995 Acta Phys. Sin. 44 1442 (in Chinese) [沈学民, 王兆申, 邵玉贵, 薛迪冶, 丁家义, 许德政, 吴从中, 邓旭, 王坚, 汪亚明, 李有宜, HT-6M实验小组 1995 物理学报 44 1442]

    [4]

    Lin Y, Wukitch S J, Bonoli P T, Marmar E, Mossessian D, Nelson-Melby E, Phillips P, Porkolab M, Schilling G, Wolfe S, Wright J 2003 Plasma Phys. Control. Fusion 45 1013

    [5]

    Majeski R, Rogers J H, Batha S H, Budny R, Fredrickson E, Grek B, Hill K, Hosea J C, LeBlanc B, Levinton F, Murakami M, Phillips C K, Ramsey A T, Schilling G, Taylor G, Wilson J R, Zarnstorff M C 1996 Phys. Rev. Lett. 76 764

    [6]

    Lin Y, Rice J E, Wukitch S J, Reinke M L, Greenwald M J, Hubbard A E, Marmar E S, Podpaly Y, Porkolab M, Tsujii N, the Alcator C-Mod team 2011 Nucl. Fusion 51 063002

    [7]

    Li X L, Wan B N, Zhong G Q, Hu L Q, Lin S Y, Zhang X J, Zang Q 2011 Chin. Phys. Lett. 28 105202

    [8]

    Stix T H 1992 Waves in Plasmas (1st Edn.) (New York: American Institute of Physics) p348

    [9]

    Fuchs V, Ram A K, Schultz S D, Bers A, Lashmore-Davies C N 1995 Phys. Plasmas 2 1637

    [10]

    Kazakov Ye O, Pavlenko I V, Weyssow B, Girka I O 2008 Ukr. J. Phys. 53 442

    [11]

    Kazakov Ye O, Pavlenko I V, Eester D Van, Weyssow B, Girka I O 2010 Plasma Phys. Control. Fusion 52 115006

    [12]

    Swanson D G 2003 Plasma Waves (2nd Edn.) (London: The institute of Physics) p5

    [13]

    Heading J 1962 An Introduction to Phase Integral Methods (London: methuen) p40

    [14]

    Abramowitz M, Stegun I A 1972 Handbook of Mathematical Functions (9th Edn.) (New York: Dover) p256

    [15]

    Chiu S C, Mayberry M J, Bard W D 1990 Nucl. Fusion 30 2551

    [16]

    Qin C M, Zhang X J, Zhao Y P 2012 24th IAEA Fusion Energy Conference San Diego, October 8-13, 2012 EX/P6-25

  • [1]

    Shi B R 1999 Magnetic Confinement Fusion Principles and Practice (1st Edn.) (Beijing: Atomic Energy Press) p198 (in Chinese) [石秉仁 1999 磁约束聚变原理与实践 1 st (北京: 原子能出版社) p198]

    [2]

    Perkins F W 1977 Nucl. Fusion 17 1197

    [3]

    Shen X M, Wang Z S, Shao Y G, Xue D Y, Ding J Y, Xu D Z, Wu C Z, Deng X, Wang J, Wang Y M, Li Y Y, HT-6M team 1995 Acta Phys. Sin. 44 1442 (in Chinese) [沈学民, 王兆申, 邵玉贵, 薛迪冶, 丁家义, 许德政, 吴从中, 邓旭, 王坚, 汪亚明, 李有宜, HT-6M实验小组 1995 物理学报 44 1442]

    [4]

    Lin Y, Wukitch S J, Bonoli P T, Marmar E, Mossessian D, Nelson-Melby E, Phillips P, Porkolab M, Schilling G, Wolfe S, Wright J 2003 Plasma Phys. Control. Fusion 45 1013

    [5]

    Majeski R, Rogers J H, Batha S H, Budny R, Fredrickson E, Grek B, Hill K, Hosea J C, LeBlanc B, Levinton F, Murakami M, Phillips C K, Ramsey A T, Schilling G, Taylor G, Wilson J R, Zarnstorff M C 1996 Phys. Rev. Lett. 76 764

    [6]

    Lin Y, Rice J E, Wukitch S J, Reinke M L, Greenwald M J, Hubbard A E, Marmar E S, Podpaly Y, Porkolab M, Tsujii N, the Alcator C-Mod team 2011 Nucl. Fusion 51 063002

    [7]

    Li X L, Wan B N, Zhong G Q, Hu L Q, Lin S Y, Zhang X J, Zang Q 2011 Chin. Phys. Lett. 28 105202

    [8]

    Stix T H 1992 Waves in Plasmas (1st Edn.) (New York: American Institute of Physics) p348

    [9]

    Fuchs V, Ram A K, Schultz S D, Bers A, Lashmore-Davies C N 1995 Phys. Plasmas 2 1637

    [10]

    Kazakov Ye O, Pavlenko I V, Weyssow B, Girka I O 2008 Ukr. J. Phys. 53 442

    [11]

    Kazakov Ye O, Pavlenko I V, Eester D Van, Weyssow B, Girka I O 2010 Plasma Phys. Control. Fusion 52 115006

    [12]

    Swanson D G 2003 Plasma Waves (2nd Edn.) (London: The institute of Physics) p5

    [13]

    Heading J 1962 An Introduction to Phase Integral Methods (London: methuen) p40

    [14]

    Abramowitz M, Stegun I A 1972 Handbook of Mathematical Functions (9th Edn.) (New York: Dover) p256

    [15]

    Chiu S C, Mayberry M J, Bard W D 1990 Nucl. Fusion 30 2551

    [16]

    Qin C M, Zhang X J, Zhao Y P 2012 24th IAEA Fusion Energy Conference San Diego, October 8-13, 2012 EX/P6-25

  • [1] ZHU XUE-GUANG, KUANG GUANG-LI, ZHAO YAN-PING, LI YOU-YI, XIE JI-KANG. AN IMPROVED MODEL OF COUPLE CALCULATION OF ION CYCLOTRON WAVE HEATING. Acta Physica Sinica, 1998, 47(7): 1130-1136. doi: 10.7498/aps.47.1130
    [2] ZHU XUE-GUANG, KUANG GUANG-LI, ZHAO YAN-PING, LI YOU-YI, XIE JI-KANG. FAST WAVE MINORITY ION HEATING. Acta Physica Sinica, 1999, 48(9): 1709-1717. doi: 10.7498/aps.48.1709
    [3] LIU SHENG-XIA. . Acta Physica Sinica, 1995, 44(1): 152-156. doi: 10.7498/aps.44.152
    [4] Shen Xue-Min, Wang Zhao-Zhong, Shao Yu-Gui, Xue Di-Ye, Ding Jia-Yi, Xu De-Zheng, Deng Xu, Wang Jian, Wang Ya-Ming, Li You-Yi. . Acta Physica Sinica, 1995, 44(9): 1442-1448. doi: 10.7498/aps.44.1442
    [5] XU ZHI-ZHAN, LI AN-MING, CHEN SHI-SHEN, LIN LI-HUANG, LIANG XIANG-CHUN, OUYANG BIN, BI WU-JI, HOU SHING-FA, YIN GUANG-YU, ZHANG SHU-GAN, PAN CHENG-MING. INVESTIGATION OF LASER HEATING OF PLASMAS. Acta Physica Sinica, 1981, 30(8): 1077-1084. doi: 10.7498/aps.30.1077
    [6] Gong Xue-Yu, Peng Xiao-Wei, Xie An-Ping, Liu Wen-Yan. Electron cyclotron current drive under different operational regimes in tokamak plasma. Acta Physica Sinica, 2006, 55(3): 1307-1314. doi: 10.7498/aps.55.1307
    [7] HE SHAO-TANG, HUANG WEN-ZHONG, SUN YONG-LIANG, YANG SHANG-JIN, CAI YU-QIN, HE AN, KONG LING-HUA, CHUNYU SHUTAI. MEASUREMENTS OF X-RAY CONVERSION EFFICIENCY IN 1.2 keV REGION FROM Cu AND-NaF PLASMA PRODUCED BY 1.06 AND 0.53μm LASER. Acta Physica Sinica, 1993, 42(8): 1252-1256. doi: 10.7498/aps.42.1252
    [8] Rong Song, Shen Shi-Quan, Wang Tian-You, Che Zhi-Zhao. Bouncing-with-spray mode and residence time of droplet impact on heated surfaces. Acta Physica Sinica, 2019, 68(15): 154701. doi: 10.7498/aps.68.20190097
    [9] WANG SHI-QING, JIN YA-QIU. NUMERICAL ANALYSIS OF SAWTOOTH OSCILLATION DURING ELECTRON CYCLOTRON HEATING PHASES. Acta Physica Sinica, 2001, 50(9): 1737-1741. doi: 10.7498/aps.50.1737
    [10] ZHU XUE-GUANG, KUANG GUANG-LI, ZHAO YAN-PING, LI YOU-YI, XIE JI-KANG. FOKKER-PLANCK EQUATION IN THE APPLICATION OF FAST WAVE HEATING. Acta Physica Sinica, 1998, 47(7): 1137-1142. doi: 10.7498/aps.47.1137
  • Citation:
Metrics
  • Abstract views:  761
  • PDF Downloads:  675
  • Cited By: 0
Publishing process
  • Received Date:  08 May 2012
  • Accepted Date:  28 October 2012
  • Published Online:  05 April 2013

Theoretical analysis and numerical calculation of mode conversion efficiency of fast wave

  • 1. Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China
Fund Project:  Project supported by the National Special Fund for Magnetically Confined Nuclear Fusion Energy (Grant No. 2010GB110000), the National Natural Science Foundation of China (Grant Nos. 11105179, 11075182), and the Main Direction Program of Knowledge Innovation of Chinese Academy of Sciences (Grant No. Y05FCQ1126).

Abstract: By considering the effect of high-field-side cutoff, the conventional Budden model has been extended to Triplet model. In this model, the reflection coefficient, transmission coefficient and mode conversion (MC) coefficient of the fast wave for a single evanescence region can be derived through using phase-integral method. Furthermore, numerical calculation of MC coefficient for double-ion species and three-ion species have been done. In the case of double ions, the result is consistent with Kazakov's work. In addition, as an example of three ions plasma, (H, 3He)D plasma in tokamak EAST, simulations of the dependence of the MC efficiency on the magnetic field, microwave frequency and minority concentration for different antenna phasings are carried out. The results show how to choose proper phasing to reach an optimum MC efficiency. This result may provide a reference to improve ICRF heating efficiency.

Reference (16)

Catalog

    /

    返回文章
    返回