Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental investigation on aero-optical aberration of the supersonic flow passing through an optical dome with gas injection

Zhu Yang-Zhu Yi Shi-He Chen Zhi Ge Yong Wang Xiao-Hu Fu Jia

Experimental investigation on aero-optical aberration of the supersonic flow passing through an optical dome with gas injection

Zhu Yang-Zhu, Yi Shi-He, Chen Zhi, Ge Yong, Wang Xiao-Hu, Fu Jia
PDF
Get Citation
  • During the flight in the atmosphere, the optical window of an optical dome needs to be cooled, and supersonic film cooling is one of the economic ways. After traversing through the complex flow field above the window, the optical wave would be distorted by fluctuations in the density field due to the expansion wave, shockwave, mixing layer, turbulent boundary layer, etc. The aero-optical aberrations induced by the flow field of an optical dome in the presence and in the absence of the gas injection at Mach 3.8 are investigated experimentally. Based on the nano-tracer planar laser scattering (NPLS) technique, the density field with high spatial-temporal resolution is first obtained by the flow image calibration, and then the optical path difference (OPD)fluctuations of the original 532 nm planar wavefront perpendicular to the window are calculated using Ray-tracing theory. Also the OPD fluctuations caused by the near-wall region flow structures are presented. In the absence of the gas injection, the flow structure is relatively simple with a long recirculation and laminar region, while in the presence of the gas injection, there appear more complex structures such as shear layer, mixing layer and turbulent boundary layer and the flow is converted into turbulence quickly. Clearly, the optical aberration in the presence of the gas injection is degraded more. For example, the values of root-mean-square OPD (OPDrms) in the absence of the gas injection are 0.038 μm and 0.0356 μm, and they are 0.0462 μm, and 0.0485 μm in the presence of the gas injection during the interval 5 μs.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2009CB724100), the National Natural Science Foundation of China (Grant No. 11172326), and the Science Research Program of National University of Defense Technology, China (Grant No. 0100010112001).
    [1]

    Sun J, Liu W Q 2012 Acta Phys. Sin. 61 124401 (in Chinese) [孙建, 刘伟强 2012 物理学报 61 124401]

    [2]

    Jumper E J, Fitzgerald E J 2001 Prog. Aerospace Sci. 37 299

    [3]

    Liu Y Y, L Q B, Zhang W X 2012 Acta Phys. Sin. 61 124201 (in Chinese) [刘扬阳, 吕群波, 张文喜 2012 物理学报 61 124201]

    [4]

    Ji X L 2010 Acta Phys. Sin. 59 692 (in Chinese) [季小玲 2010 物理学报 59 692]

    [5]

    He X M, L B D 2012 Acta Phys. Sin. 61 054201 (in Chinese) [何雪梅, 吕百达 2012 物理学报 61 054201]

    [6]

    Chen X W, Ji X L 2009 Acta Phys. Sin. 58 2435 (in Chinese) [陈晓文, 季小玲 2009 物理学报 58 2435]

    [7]

    Wei H Y, Wu Z S, Peng H 2008 Acta Phys. Sin. 57 6666 (in Chinese) [韦宏艳, 吴振森, 彭辉 2008 物理学报 57 6666]

    [8]

    Li G C 2006 Aero-Optics (Beijing:National Defense Industry Press) (in Chinese) [李桂春 2006 气动光学 (北京:国防工业出版社)]

    [9]

    Klein M V 1970 Optics (New York:John Wiley and Sons)

    [10]

    Jumper E J 1997 AIAA Paper 1997-2350

    [11]

    Sutton G W 1985 AIAA J. 23 1525

    [12]

    Yi S H, Tian L F, Zhao Y X, He L, Chen Z 2010 Chin. Sci. Bull. 55 3545

    [13]

    Tian L F, Zhao Y X, He L, Chen Z 2011 Chin. Sci. Bull. 56 2320

    [14]

    Zhao Y X, Yi S H, Tian L F, He L, Cheng Z Y 2010 Sci. China G 53 81

    [15]

    Gao Q, Jiang Z F, Yi S H, Zhao Y X 2010 Appl. Opt. 49 3786

    [16]

    Gao Q, Yi S H, Jiang Z F, Zhao Y X, Xie W K 2012 Chin. Phys. B 21 064701

    [17]

    Sutton G W, Pond J E, Snow R, Hwang Y 1993 AIAA Paper 93-2675

    [18]

    Tian L F, Yi S H, Zhao Y X, He L, Cheng Z Y 2009 J. Experim. Fluids Mech. 23 15 (in Chinese) [田立丰, 易仕和, 赵玉新, 何霖, 程忠宇 2009 实验流体力学 23 15]

    [19]

    Zhao Y X, Yi S H, Tian L F, Cheng Z Y 2009 Sci. China E 52 3640

    [20]

    Zhao Y X, Yi S H, He L, Cheng Z Y, Tian L F 2007 Chin. Sci. Bull. 52 1297

    [21]

    Zhao Y X, Yi S H, He L, Cheng Z Y, Tian L F 2007 J. National Univ. Technol. 29 12 (in Chinese) [赵玉新, 易仕和, 何霖, 程忠宇, 田立丰 2007 国防科技大学学报 29 12]

    [22]

    Zhao Y X, Yi S H, Tian L F, He L, Cheng Z Y 2008 Sci. China G 51 1134

    [23]

    Yi S H, He L, Zhao Y X, Tian L F, Cheng Z Y 2009 Sci. China G 52 2001

    [24]

    He L, Yi S H, Zhao Y X, Tian L F, Chen Z 2011 Chin. Sci. Bull. 56 489

    [25]

    Hornak J P 2002 Encyclopedia of Imaging Science and Technology (New York:John Wiley and Sons) pp390-420

    [26]

    Tian L F, Yi S H, Zhao Y X, He L, Cheng Z Y 2009 Sci. China G 52 1357

    [27]

    Yin X L 2003 Aero-optical Mechanism (Beijing:China Astronautics Press) p186 (in Chinese) [殷兴良 2003 气动光学原理 (北京:中国宇航出版社) p186]

  • [1]

    Sun J, Liu W Q 2012 Acta Phys. Sin. 61 124401 (in Chinese) [孙建, 刘伟强 2012 物理学报 61 124401]

    [2]

    Jumper E J, Fitzgerald E J 2001 Prog. Aerospace Sci. 37 299

    [3]

    Liu Y Y, L Q B, Zhang W X 2012 Acta Phys. Sin. 61 124201 (in Chinese) [刘扬阳, 吕群波, 张文喜 2012 物理学报 61 124201]

    [4]

    Ji X L 2010 Acta Phys. Sin. 59 692 (in Chinese) [季小玲 2010 物理学报 59 692]

    [5]

    He X M, L B D 2012 Acta Phys. Sin. 61 054201 (in Chinese) [何雪梅, 吕百达 2012 物理学报 61 054201]

    [6]

    Chen X W, Ji X L 2009 Acta Phys. Sin. 58 2435 (in Chinese) [陈晓文, 季小玲 2009 物理学报 58 2435]

    [7]

    Wei H Y, Wu Z S, Peng H 2008 Acta Phys. Sin. 57 6666 (in Chinese) [韦宏艳, 吴振森, 彭辉 2008 物理学报 57 6666]

    [8]

    Li G C 2006 Aero-Optics (Beijing:National Defense Industry Press) (in Chinese) [李桂春 2006 气动光学 (北京:国防工业出版社)]

    [9]

    Klein M V 1970 Optics (New York:John Wiley and Sons)

    [10]

    Jumper E J 1997 AIAA Paper 1997-2350

    [11]

    Sutton G W 1985 AIAA J. 23 1525

    [12]

    Yi S H, Tian L F, Zhao Y X, He L, Chen Z 2010 Chin. Sci. Bull. 55 3545

    [13]

    Tian L F, Zhao Y X, He L, Chen Z 2011 Chin. Sci. Bull. 56 2320

    [14]

    Zhao Y X, Yi S H, Tian L F, He L, Cheng Z Y 2010 Sci. China G 53 81

    [15]

    Gao Q, Jiang Z F, Yi S H, Zhao Y X 2010 Appl. Opt. 49 3786

    [16]

    Gao Q, Yi S H, Jiang Z F, Zhao Y X, Xie W K 2012 Chin. Phys. B 21 064701

    [17]

    Sutton G W, Pond J E, Snow R, Hwang Y 1993 AIAA Paper 93-2675

    [18]

    Tian L F, Yi S H, Zhao Y X, He L, Cheng Z Y 2009 J. Experim. Fluids Mech. 23 15 (in Chinese) [田立丰, 易仕和, 赵玉新, 何霖, 程忠宇 2009 实验流体力学 23 15]

    [19]

    Zhao Y X, Yi S H, Tian L F, Cheng Z Y 2009 Sci. China E 52 3640

    [20]

    Zhao Y X, Yi S H, He L, Cheng Z Y, Tian L F 2007 Chin. Sci. Bull. 52 1297

    [21]

    Zhao Y X, Yi S H, He L, Cheng Z Y, Tian L F 2007 J. National Univ. Technol. 29 12 (in Chinese) [赵玉新, 易仕和, 何霖, 程忠宇, 田立丰 2007 国防科技大学学报 29 12]

    [22]

    Zhao Y X, Yi S H, Tian L F, He L, Cheng Z Y 2008 Sci. China G 51 1134

    [23]

    Yi S H, He L, Zhao Y X, Tian L F, Cheng Z Y 2009 Sci. China G 52 2001

    [24]

    He L, Yi S H, Zhao Y X, Tian L F, Chen Z 2011 Chin. Sci. Bull. 56 489

    [25]

    Hornak J P 2002 Encyclopedia of Imaging Science and Technology (New York:John Wiley and Sons) pp390-420

    [26]

    Tian L F, Yi S H, Zhao Y X, He L, Cheng Z Y 2009 Sci. China G 52 1357

    [27]

    Yin X L 2003 Aero-optical Mechanism (Beijing:China Astronautics Press) p186 (in Chinese) [殷兴良 2003 气动光学原理 (北京:中国宇航出版社) p186]

  • [1] Zhu Yang-Zhu, Yi Shi-He, Kong Xiao-Ping, He Lin. Fine structures and characteristics on supersonic flow over backward facing step with tangential injection. Acta Physica Sinica, 2015, 64(6): 064701. doi: 10.7498/aps.64.064701
    [2] Ding Hao-Lin, Yi Shi-He, Zhu Yang-Zhu, Zhao Xin-Hai, He Lin. Experimental investigation on aero-optics of supersonic turbulent boundary layers at different light incident angles. Acta Physica Sinica, 2017, 66(24): 244201. doi: 10.7498/aps.66.244201
    [3] Xie Wen-Ke, Liu Jun-Sheng, Fei Jia-Le, Zhou Quan, Xia Hui, Chen Xin, Zhang Pan, Peng Yi-Ming, Yu Tao. Influence of weighting function on accuracy of supersonic mixing layer wave-front variance estimation with linking equation. Acta Physica Sinica, 2019, 68(9): 094202. doi: 10.7498/aps.68.20182269
    [4] He Lin, Yi Shi-He, Lu Xiao-Ge. Experimental study on the density characteristics of a supersonic turbulent boundary layer. Acta Physica Sinica, 2017, 66(2): 024701. doi: 10.7498/aps.66.024701
    [5] Gang Dun-Dian, Yi Shi-He, Zhao Yun-Fei. Experimental and numerical studies of supersonic flow over circular protuberances on a flat plate. Acta Physica Sinica, 2015, 64(5): 054705. doi: 10.7498/aps.64.054705
    [6] Xu Hao, Wang Cong, Lu Hong-Zhi, Huang Wen-Hu. Experimental study on submerged supersonic gaseous jet induced tail cavity. Acta Physica Sinica, 2018, 67(1): 014703. doi: 10.7498/aps.67.20171617
    [7] Zhu Yang-Zhu, Yi Shi-He, Kong Xiao-Ping, Quan Peng-Cheng, Chen Zhi, Tian Li-Feng. Fine structures and the unsteadiness characteristics of supersonic flow over backward facing step via NPLS. Acta Physica Sinica, 2014, 63(13): 134701. doi: 10.7498/aps.63.134701
    [8] Xu Jia-Di, Jiang Zhi-Xiong, Gong Xiao-Long. A jet acceleration mechanism for the black hole disk system. Acta Physica Sinica, 2017, 66(3): 039701. doi: 10.7498/aps.66.039701
    [9] Zhang Tian-Tian, Yi Shi-He, Zhu Yang-Zhu, He Lin. Reconstruction and calibration on aero-optical wavefront aberration based on Background oriented schlieren based wavefront sensing. Acta Physica Sinica, 2015, 64(8): 084201. doi: 10.7498/aps.64.084201
    [10] Wu Hai-Ying, Zhang Chun-Min, Zhao Bao-Chang, Li Ying-Cai. Calculation and analysis of the optical path difference of modified wollaston prism. Acta Physica Sinica, 2009, 58(3): 1642-1647. doi: 10.7498/aps.58.1642
  • Citation:
Metrics
  • Abstract views:  684
  • PDF Downloads:  566
  • Cited By: 0
Publishing process
  • Received Date:  09 November 2012
  • Accepted Date:  07 December 2012
  • Published Online:  20 April 2013

Experimental investigation on aero-optical aberration of the supersonic flow passing through an optical dome with gas injection

  • 1. College of Aerospace Science and Material Engineering, National University of Defense Technology, Changsha 410073, China
Fund Project:  Project supported by the National Basic Research Program of China (Grant No. 2009CB724100), the National Natural Science Foundation of China (Grant No. 11172326), and the Science Research Program of National University of Defense Technology, China (Grant No. 0100010112001).

Abstract: During the flight in the atmosphere, the optical window of an optical dome needs to be cooled, and supersonic film cooling is one of the economic ways. After traversing through the complex flow field above the window, the optical wave would be distorted by fluctuations in the density field due to the expansion wave, shockwave, mixing layer, turbulent boundary layer, etc. The aero-optical aberrations induced by the flow field of an optical dome in the presence and in the absence of the gas injection at Mach 3.8 are investigated experimentally. Based on the nano-tracer planar laser scattering (NPLS) technique, the density field with high spatial-temporal resolution is first obtained by the flow image calibration, and then the optical path difference (OPD)fluctuations of the original 532 nm planar wavefront perpendicular to the window are calculated using Ray-tracing theory. Also the OPD fluctuations caused by the near-wall region flow structures are presented. In the absence of the gas injection, the flow structure is relatively simple with a long recirculation and laminar region, while in the presence of the gas injection, there appear more complex structures such as shear layer, mixing layer and turbulent boundary layer and the flow is converted into turbulence quickly. Clearly, the optical aberration in the presence of the gas injection is degraded more. For example, the values of root-mean-square OPD (OPDrms) in the absence of the gas injection are 0.038 μm and 0.0356 μm, and they are 0.0462 μm, and 0.0485 μm in the presence of the gas injection during the interval 5 μs.

Reference (27)

Catalog

    /

    返回文章
    返回