Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Large-eddy simulation and experimental study of deflecting oscillation of planar opposed jets

Tu Gong-Yi Li Wei-Feng Huang Guo-Feng Wang Fu-Chen

Large-eddy simulation and experimental study of deflecting oscillation of planar opposed jets

Tu Gong-Yi, Li Wei-Feng, Huang Guo-Feng, Wang Fu-Chen
PDF
Get Citation
  • The deflecting oscillation of planar opposed jets is experimentally studied and numerically simulated by large-eddy simulation (LES) at 25 ≤ Re ≤ 10000 (Re= U0hρ/μ, where U0 is the bulk velocity of the jet at the nozzle exit, h is the height of the slit of the planar nozzle, and ρ and μ are the density and dynamic viscosity of fluid, respectively) and 4h≤ L ≤ 40h, where L is the nozzle separation. The numerical results are validated by comparing with the experimental results of planar opposed jets. Maps of parameter space describing the deflecting oscillation of planar opposed jets at various nozzle separations and exit Reynolds numbers are presented. And the variation features of deflecting oscillation periods and velocity-pressure of turbulent planar opposed jets are primarily investigated. The results of the study show that the LES can effectively predict the deflecting oscillation of planar opposed jets. The velocity and pressure at specific points vary periodically while the deflecting oscillation of planar opposed jets happens. Furthermore, the variation periods of velocity and pressure are in accordance with the periods of the deflecting oscillation. In essence, the deflecting oscillation of planar opposed jets is caused by periodical variation and transformation of the velocity and pressure.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2010CB227004), the National Natural Science Foundation of China (Grant No. 20906024), and the Fundamental Research Fund for the Central Universities, China (Grant No. WB1014022).
    [1]

    Elperin I T 1961 J. Eng. Phys. 6 62

    [2]

    Goldschmidt V W, Bradshaw P 1973 Phys. Fluids 16 354

    [3]

    Gutmark E, Wygnanski I 1976 J. Fluid Mech. 73 465

    [4]

    Mi J, Nathan G J 2001 14th Australasian Fluid Mechanics Conference Adelaide, Australia, December 10-14, 2001 p817

    [5]

    Fiedler H E, Hibino K, Mensing P 1985 J. Fluid Mech. 150 281

    [6]

    Riese M 2008 Ph. D. Dissertation (Adelaide, Australia:Adelaide University)

    [7]

    Mi J C, Feng B P, Deo R C, Nathan G J 2009 Acta Phys. Sin. 58 7756 (in Chinese) [米建春, 冯宝平, Deo R C, Nathan G J 2009 物理学报 58 7756]

    [8]

    Mi J C, Feng B P 2010 Acta Phys. Sin. 59 4748 (in Chinese) [米建春, 冯宝平 2010 物理学报 59 4748]

    [9]

    Mi J C, Feng B P 2011 Chin. Phys. B 20 074701

    [10]

    Liu Y H, Gan F J, Zhang K 2010 Acta Phys. Sin. 59 4084 (in Chinese) [刘演华, 干富军, 张凯 2010 物理学报 59 4084]

    [11]

    Lu H B, Liu W Q 2012 Chin. Phys. B 21 084401

    [12]

    Besbes S, Mhiri H, Palec G L, Bournot P 2003 Heat Mass Transfer. 39 675

    [13]

    Johansson P S, Andersson H I 2005 Phys. Fluids 17 055109

    [14]

    Shi Y N, Qin C S 2007 Chin. Phys. Lett. 24 2281

    [15]

    Denshchikov V A, Kondrat'ev V N, Romashov A N 1978 Fluid Dynamics 13 924

    [16]

    Li W F, Yao T L, Liu H F, Wang F C 2011 Aiche J. 57 1413

    [17]

    Sun Z G, Li W F, Liu H F, Yu Z H 2009 CIESC J. 60 338 (in Chinese) [孙志刚, 李伟锋, 刘海峰, 于遵宏2009 化工学报 60 338]

    [18]

    Pawlowski R P, Salinger A G, Shadid J N, Mountziaris T J 2006 J. Fluid Mech. 551 117

    [19]

    Li W F, Sun Z G, Liu H F, Wang F C, Yu Z H 2008 Chem. Eng. J. 138 283

    [20]

    Li W F, Yao T L, Wang F C 2010 Aiche J. 56 2513

    [21]

    Li W F, Sun Z G, Liu H F, Wang F C, Yu Z H 2007 CIESC J. 58 1385 (in Chinese) [李伟锋, 孙志刚, 刘海峰, 王辅臣, 于遵宏2007 化工学报 58 1385]

    [22]

    Li W F, Sun Z G, Liu H F, Yu Z H 2008 CIESC J. 59 46 (in Chinese) [李伟锋, 孙志刚, 刘海峰, 王辅臣, 于遵宏2008 化工学报 59 46]

    [23]

    Liu Y, Olsen M G, Fox R O 2009 Lab. Chip. 9 1110

    [24]

    Wang G L, Lu X Y 2012 Chin. Phys. Lett. 29 064704

    [25]

    Mathey F, Cokljat D, Bertoglio J P, Sergent E 2006 Prog. Comput. Fluid Dyn. 6 58

    [26]

    Germano M, Piomelli U, Moin P, Cabot W H 1991 Phys. Fluids 3 1760

    [27]

    Lilly D K 1992 Phys. Fluids 4 633

    [28]

    Dai G C, Chen M H 2005 Fluid Mechanics in Chemical Engineering (2nd Ed.) (Beijing:Chemical Industry Press) p161 (in Chinese) [戴干策, 陈敏恒2005化工流体力学 (第二版) (北京:化学工业出版社) 第161页]

    [29]

    Denshchikov V A, Kondrat'ev V N, Romashov A N, Chubarov V M 1983 Fluid Dynamics 18 460

  • [1]

    Elperin I T 1961 J. Eng. Phys. 6 62

    [2]

    Goldschmidt V W, Bradshaw P 1973 Phys. Fluids 16 354

    [3]

    Gutmark E, Wygnanski I 1976 J. Fluid Mech. 73 465

    [4]

    Mi J, Nathan G J 2001 14th Australasian Fluid Mechanics Conference Adelaide, Australia, December 10-14, 2001 p817

    [5]

    Fiedler H E, Hibino K, Mensing P 1985 J. Fluid Mech. 150 281

    [6]

    Riese M 2008 Ph. D. Dissertation (Adelaide, Australia:Adelaide University)

    [7]

    Mi J C, Feng B P, Deo R C, Nathan G J 2009 Acta Phys. Sin. 58 7756 (in Chinese) [米建春, 冯宝平, Deo R C, Nathan G J 2009 物理学报 58 7756]

    [8]

    Mi J C, Feng B P 2010 Acta Phys. Sin. 59 4748 (in Chinese) [米建春, 冯宝平 2010 物理学报 59 4748]

    [9]

    Mi J C, Feng B P 2011 Chin. Phys. B 20 074701

    [10]

    Liu Y H, Gan F J, Zhang K 2010 Acta Phys. Sin. 59 4084 (in Chinese) [刘演华, 干富军, 张凯 2010 物理学报 59 4084]

    [11]

    Lu H B, Liu W Q 2012 Chin. Phys. B 21 084401

    [12]

    Besbes S, Mhiri H, Palec G L, Bournot P 2003 Heat Mass Transfer. 39 675

    [13]

    Johansson P S, Andersson H I 2005 Phys. Fluids 17 055109

    [14]

    Shi Y N, Qin C S 2007 Chin. Phys. Lett. 24 2281

    [15]

    Denshchikov V A, Kondrat'ev V N, Romashov A N 1978 Fluid Dynamics 13 924

    [16]

    Li W F, Yao T L, Liu H F, Wang F C 2011 Aiche J. 57 1413

    [17]

    Sun Z G, Li W F, Liu H F, Yu Z H 2009 CIESC J. 60 338 (in Chinese) [孙志刚, 李伟锋, 刘海峰, 于遵宏2009 化工学报 60 338]

    [18]

    Pawlowski R P, Salinger A G, Shadid J N, Mountziaris T J 2006 J. Fluid Mech. 551 117

    [19]

    Li W F, Sun Z G, Liu H F, Wang F C, Yu Z H 2008 Chem. Eng. J. 138 283

    [20]

    Li W F, Yao T L, Wang F C 2010 Aiche J. 56 2513

    [21]

    Li W F, Sun Z G, Liu H F, Wang F C, Yu Z H 2007 CIESC J. 58 1385 (in Chinese) [李伟锋, 孙志刚, 刘海峰, 王辅臣, 于遵宏2007 化工学报 58 1385]

    [22]

    Li W F, Sun Z G, Liu H F, Yu Z H 2008 CIESC J. 59 46 (in Chinese) [李伟锋, 孙志刚, 刘海峰, 王辅臣, 于遵宏2008 化工学报 59 46]

    [23]

    Liu Y, Olsen M G, Fox R O 2009 Lab. Chip. 9 1110

    [24]

    Wang G L, Lu X Y 2012 Chin. Phys. Lett. 29 064704

    [25]

    Mathey F, Cokljat D, Bertoglio J P, Sergent E 2006 Prog. Comput. Fluid Dyn. 6 58

    [26]

    Germano M, Piomelli U, Moin P, Cabot W H 1991 Phys. Fluids 3 1760

    [27]

    Lilly D K 1992 Phys. Fluids 4 633

    [28]

    Dai G C, Chen M H 2005 Fluid Mechanics in Chemical Engineering (2nd Ed.) (Beijing:Chemical Industry Press) p161 (in Chinese) [戴干策, 陈敏恒2005化工流体力学 (第二版) (北京:化学工业出版社) 第161页]

    [29]

    Denshchikov V A, Kondrat'ev V N, Romashov A N, Chubarov V M 1983 Fluid Dynamics 18 460

  • [1] Guo Guang-Ming, Liu Hong, Zhang Bin, Zhang Zhong-Yang, Zhang Qing-Bing. Characteristics of convective speeds of vortex structures in mixing layer. Acta Physica Sinica, 2016, 65(7): 074702. doi: 10.7498/aps.65.074702
    [2] Guo Guang-Ming, Liu Hong, Zhang Bin, Zhang Qing-Bing. Evolution mechanism of vortices in a supersonic mixing layer controlled by the pulsed forcing. Acta Physica Sinica, 2017, 66(8): 084701. doi: 10.7498/aps.66.084701
    [3] Tao Shi, Wang Liang, Guo Zhao-Li. Lattice Boltzmann modeling of microscale oscillating Couette flow. Acta Physica Sinica, 2014, 63(21): 214703. doi: 10.7498/aps.63.214703
    [4] Wang Lin, Wei Lai, Wang Zheng-Xiong. Effect of out-of-plane driving flow on formation of plasmoids in current sheet system. Acta Physica Sinica, 2020, 69(5): 059401. doi: 10.7498/aps.69.20191612
    [5] Ge Ming-Ming, Wang Sheng-Ye, Wang Guang-Xue, Deng Xiao-Gang. Aeroacoustic simulation of the high-lift airfoil using hybrid reynolds averaged Navier-Stokes/high-order implicit large eddy simulation method. Acta Physica Sinica, 2019, 68(20): 204702. doi: 10.7498/aps.68.20190777
    [6] Qiang Hong-Fu, Shi Chao, Chen Fu-Zhen, Han Ya-Wei. Simulation of two-dimensional droplet collisions based on SPH method of multi-phase flows with large density differences. Acta Physica Sinica, 2013, 62(21): 214701. doi: 10.7498/aps.62.214701
    [7] Lü Yao-Ping, Gu Guo-Feng, Lu Hua-Chun, Dai Yu, Tang Guo-Ning. Reflection of plane wave in oscillatory media. Acta Physica Sinica, 2009, 58(11): 7573-7578. doi: 10.7498/aps.58.7573
    [8] Wang Wei, Deguchi Yoshihiro, He Yong-Sen, Zhang Jia-Zhong. Similarity and vortex-acoustic lock-on behavior in thermoacoustic oscillation involving vortex shedding. Acta Physica Sinica, 2019, 68(23): 234303. doi: 10.7498/aps.68.20190663
    [9] Zhu Lei, Liu Zhong, Bao Bo-Cheng, Xu Jian-Ping. Generation of multi-scroll hyperchaotic attractor based on Colpitts oscillator model. Acta Physica Sinica, 2010, 59(3): 1540-1548. doi: 10.7498/aps.59.1540
    [10] Liu Meng-Ke, Zhang Hui, Fan Bao-Chun, Han Yang, Gui Ming-Yue. The mechanism investigation of two-degree-of-freedom vortex-induced vibration with electro-magnetic forces. Acta Physica Sinica, 2016, 65(24): 244702. doi: 10.7498/aps.65.244702
  • Citation:
Metrics
  • Abstract views:  890
  • PDF Downloads:  38111
  • Cited By: 0
Publishing process
  • Received Date:  24 November 2012
  • Accepted Date:  18 December 2012
  • Published Online:  20 April 2013

Large-eddy simulation and experimental study of deflecting oscillation of planar opposed jets

  • 1. Key Laboratory of Coal Gasification and Energy Chemical Engineering of Ministry of Education, East China University of Science and Technology,Shanghai 200237, China
Fund Project:  Project supported by the National Basic Research Program of China (Grant No. 2010CB227004), the National Natural Science Foundation of China (Grant No. 20906024), and the Fundamental Research Fund for the Central Universities, China (Grant No. WB1014022).

Abstract: The deflecting oscillation of planar opposed jets is experimentally studied and numerically simulated by large-eddy simulation (LES) at 25 ≤ Re ≤ 10000 (Re= U0hρ/μ, where U0 is the bulk velocity of the jet at the nozzle exit, h is the height of the slit of the planar nozzle, and ρ and μ are the density and dynamic viscosity of fluid, respectively) and 4h≤ L ≤ 40h, where L is the nozzle separation. The numerical results are validated by comparing with the experimental results of planar opposed jets. Maps of parameter space describing the deflecting oscillation of planar opposed jets at various nozzle separations and exit Reynolds numbers are presented. And the variation features of deflecting oscillation periods and velocity-pressure of turbulent planar opposed jets are primarily investigated. The results of the study show that the LES can effectively predict the deflecting oscillation of planar opposed jets. The velocity and pressure at specific points vary periodically while the deflecting oscillation of planar opposed jets happens. Furthermore, the variation periods of velocity and pressure are in accordance with the periods of the deflecting oscillation. In essence, the deflecting oscillation of planar opposed jets is caused by periodical variation and transformation of the velocity and pressure.

Reference (29)

Catalog

    /

    返回文章
    返回