Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

An optimal layered inhomogeneous background used in microwave tomography system in metallic chamber

Ding Liang Liu Pei-Guo He Jian-Guo Joe LoVetri

An optimal layered inhomogeneous background used in microwave tomography system in metallic chamber

Ding Liang, Liu Pei-Guo, He Jian-Guo, Joe LoVetri
PDF
Get Citation
  • An optimal layered inhomogeneous background which can be used in an embedded microwave tomography system is proposed. The method is based on a new evaluation method of integral radiation operator with respect to an configuration and optimal methods such as simulated annealing method. First, the integral radiation operator is calculated using the finite element method. Then, a kind of metric which can be used to evaluate the operator is proposed. The metric contains information about the whole singular value spectrum of a integral radiation operator. A set of synthetic researches is performed to show the correlation between the metric and inversion error. The method can evaluate an integral radiation operator using a number, and it can be used in optimal process easily as the cost function. Simulated annealing method is employed to obtain the permittivity of each layer in the optimal layered inhomogeneous background. Finally, synthetic researches are employed both on simple target and complex target to test the optimal layered inhomogeneous background. The results show that the optimal layered inhomogeneous background can expedite the convergence process and more accurate inversion results can be obtained.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61372029), and Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20114307110022).
    [1]

    Meaneya P M, Fanninga M W, Raynoldsa T, Foxa C J, Fang Q, Kogelb C A, Poplackb S P, Paulsena K D 2007 Acad. Radiol. 14 207

    [2]

    Zakaria A, Baran A, LoVetri J 2012 IEEE Antennas. Wirel. Propag. Lett. 11 1606

    [3]

    Song L P, Yu C, Liu Q H 2005 IEEE Trans. Geosci. Remote Sens. 43 2793

    [4]

    Abubakar A, Habashy T M, Druskin V L, Knizhnerman L, Alumbaugh D 2008 Geophysics 73 F165

    [5]

    Zhu H Y, Shen J Q, Li J 2004 Acta Phys. Sin. 53 947(in Chinese)[朱红毅, 沈建其, 李军 2004 物理学报 53 947]

    [6]

    Zhang P, Zhang X J 2013 Acta Phys. Sin. 62 164201(in Chinese)[张鹏, 张晓娟 2013 物理学报 62 164201]

    [7]

    Sheen D M, McMakin D L, Hall T E 2001 IEEE Trans. Microw. Theory Tech. 49 1581

    [8]

    Wang F F, Zhang Y R 2012 Chin. Phys. B 21 050204

    [9]

    Xiao X, Xu L, Li Q W 2013 Chin. Phys. B 22 094101

    [10]

    Crocco L, Litman A 2009 Inverse Probl. 25 065001

    [11]

    Gilmore C, LoVetri J 2008 Inverse Probl. 24 035008

    [12]

    Williams T C, Sill J M, Fear E C 2008 IEEE Trans. Biomed Eng. 55 1678

    [13]

    Williams T C, Bourqui J, Cameron T R, Okoniewski M, Fear E C 2011 IEEE Trans. Biomed Eng. 58 1193

    [14]

    Ding L, Liu P G, He J G, Zakaria A, LoVetri J 2014 Acta Phys. Sin. 63 044102(in Chinese)[丁亮, 刘培国, 何建国, Amer Zakaria, Joe LoVetri 2014 物理学报 63 044102]

    [15]

    Zakaria A, Gilmore C, LoVetri J 2010 Inverse Probl. 26 115010

    [16]

    Xie Z B, Feng J C 2011 Chin. Phys. B 20 050504

    [17]

    Mojabi P, LoVetri J 2009 IEEE Antennas. Wirel. Propag. Lett. 8 645

    [18]

    Zakaria A, LoVetri J 2011 IEEE Trans. Antennas Propag. 59 3495

  • [1]

    Meaneya P M, Fanninga M W, Raynoldsa T, Foxa C J, Fang Q, Kogelb C A, Poplackb S P, Paulsena K D 2007 Acad. Radiol. 14 207

    [2]

    Zakaria A, Baran A, LoVetri J 2012 IEEE Antennas. Wirel. Propag. Lett. 11 1606

    [3]

    Song L P, Yu C, Liu Q H 2005 IEEE Trans. Geosci. Remote Sens. 43 2793

    [4]

    Abubakar A, Habashy T M, Druskin V L, Knizhnerman L, Alumbaugh D 2008 Geophysics 73 F165

    [5]

    Zhu H Y, Shen J Q, Li J 2004 Acta Phys. Sin. 53 947(in Chinese)[朱红毅, 沈建其, 李军 2004 物理学报 53 947]

    [6]

    Zhang P, Zhang X J 2013 Acta Phys. Sin. 62 164201(in Chinese)[张鹏, 张晓娟 2013 物理学报 62 164201]

    [7]

    Sheen D M, McMakin D L, Hall T E 2001 IEEE Trans. Microw. Theory Tech. 49 1581

    [8]

    Wang F F, Zhang Y R 2012 Chin. Phys. B 21 050204

    [9]

    Xiao X, Xu L, Li Q W 2013 Chin. Phys. B 22 094101

    [10]

    Crocco L, Litman A 2009 Inverse Probl. 25 065001

    [11]

    Gilmore C, LoVetri J 2008 Inverse Probl. 24 035008

    [12]

    Williams T C, Sill J M, Fear E C 2008 IEEE Trans. Biomed Eng. 55 1678

    [13]

    Williams T C, Bourqui J, Cameron T R, Okoniewski M, Fear E C 2011 IEEE Trans. Biomed Eng. 58 1193

    [14]

    Ding L, Liu P G, He J G, Zakaria A, LoVetri J 2014 Acta Phys. Sin. 63 044102(in Chinese)[丁亮, 刘培国, 何建国, Amer Zakaria, Joe LoVetri 2014 物理学报 63 044102]

    [15]

    Zakaria A, Gilmore C, LoVetri J 2010 Inverse Probl. 26 115010

    [16]

    Xie Z B, Feng J C 2011 Chin. Phys. B 20 050504

    [17]

    Mojabi P, LoVetri J 2009 IEEE Antennas. Wirel. Propag. Lett. 8 645

    [18]

    Zakaria A, LoVetri J 2011 IEEE Trans. Antennas Propag. 59 3495

  • [1] Ding Liang, Liu Pei-Guo, He Jian-Guo, Amer Zakaria, Joe LoVetri. Enhancing microwave tomography in a circular metallic chamber by an inhomogeneous background. Acta Physica Sinica, 2014, 63(4): 044102. doi: 10.7498/aps.63.044102
    [2] Fan Qi-Meng, Yin Cheng-You. Super-resolution imaging of high-contrast target in elctromagnetic inverse scattering. Acta Physica Sinica, 2018, 67(14): 144101. doi: 10.7498/aps.67.20180266
    [3] Chen Bi-Yun, Zhang Ye-Rong, Wang Lei, Wang Fang-Fang. Microwave tomography for early breast cancer detection based on the alternating direction implicit finite-difference time-domain method. Acta Physica Sinica, 2016, 65(14): 144101. doi: 10.7498/aps.65.144101
    [4] Wang Fang-Fang, Zhang Ye-Rong. An electromagnetic inverse scattering approach based on support vector machine. Acta Physica Sinica, 2012, 61(8): 084101. doi: 10.7498/aps.61.084101
    [5] Liu Guang-Dong, Zhang Ye-Rong. Time-domain inverse scattering problem for two-dimensional frequency-dispersive lossy media. Acta Physica Sinica, 2010, 59(10): 6969-6979. doi: 10.7498/aps.59.6969
    [6] Duan Xiao-Liang, Wang Yi-Bo, Yang Hui-Zhu. Regularized seismic velocity inversion based on inverse scattering theory. Acta Physica Sinica, 2015, 64(7): 078901. doi: 10.7498/aps.64.078901
    [7] Zhang Yu, Zhang Xiao-Juan, Fang Guang-You. A data inversion method for electromagnetic scattering from large-scale layered medium. Acta Physica Sinica, 2013, 62(4): 044204. doi: 10.7498/aps.62.044204
    [8] Cao Xiao-Qun, Huang Qun-Bo, Liu Bai-Nian, Zhu Meng-Bin, Yu Yi. A new data assimilation method based on dual-number theory. Acta Physica Sinica, 2015, 64(13): 130502. doi: 10.7498/aps.64.130502
    [9] Qiao Zhi-Wei. The total variation constrained data divergence minimization model for image reconstruction and its Chambolle-Pock solving algorithm. Acta Physica Sinica, 2018, 67(19): 198701. doi: 10.7498/aps.67.20180839
    [10] ZHU JING, WU MENG-YUE, LI SHU-YOU, DU ZHI-HUI, LI SAN-LI. PARALLEL REALIZATION OF SIMULATED ANNEALING ALGORITHM: MODIFICATIONS AND APPLICATIONS. Acta Physica Sinica, 2001, 50(7): 1260-1263. doi: 10.7498/aps.50.1260
  • Citation:
Metrics
  • Abstract views:  329
  • PDF Downloads:  376
  • Cited By: 0
Publishing process
  • Received Date:  28 February 2014
  • Accepted Date:  12 April 2014
  • Published Online:  20 September 2014

An optimal layered inhomogeneous background used in microwave tomography system in metallic chamber

  • 1. School of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073, China;
  • 2. Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 61372029), and Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20114307110022).

Abstract: An optimal layered inhomogeneous background which can be used in an embedded microwave tomography system is proposed. The method is based on a new evaluation method of integral radiation operator with respect to an configuration and optimal methods such as simulated annealing method. First, the integral radiation operator is calculated using the finite element method. Then, a kind of metric which can be used to evaluate the operator is proposed. The metric contains information about the whole singular value spectrum of a integral radiation operator. A set of synthetic researches is performed to show the correlation between the metric and inversion error. The method can evaluate an integral radiation operator using a number, and it can be used in optimal process easily as the cost function. Simulated annealing method is employed to obtain the permittivity of each layer in the optimal layered inhomogeneous background. Finally, synthetic researches are employed both on simple target and complex target to test the optimal layered inhomogeneous background. The results show that the optimal layered inhomogeneous background can expedite the convergence process and more accurate inversion results can be obtained.

Reference (18)

Catalog

    /

    返回文章
    返回