Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fabrication of pixelated polarizer array and its application in polarization enhancement

Zhang Zhi-Gang Dong Feng-Liang Zhang Qing-Chuan Chu Wei-Guo Qiu Kang Cheng Teng Gao Jie Wu Xiao-Ping

Fabrication of pixelated polarizer array and its application in polarization enhancement

Zhang Zhi-Gang, Dong Feng-Liang, Zhang Qing-Chuan, Chu Wei-Guo, Qiu Kang, Cheng Teng, Gao Jie, Wu Xiao-Ping
PDF
Get Citation
  • Pixelated polarizer array can be used in the real-time measurement of Stokes parameters. In this paper, pixelated polarizer array based on the aluminum nano-grating is designed and fabricated, and the fabrication technology is electron beam exposure technology. The size of each unit is 7.4 μm, and the polarization directions of each adjacent 2×2 units in the polarizer array are 0, π/4, π/2, and 3π/4. The period, duty cycle, depth and surface type of the grating are 140 nm, 0.5, 100 nm and rectangle type, respectively. The scanning electron micrographs of the pixelated polarizer array show that there is no disconnection, cross and pollution on the fabricated metal nano-grating lines. The nano-grating lines are straight and uniform in thickness, and the surface type of the grating is ideal rectangular type. The polarization optical micrographs show that the pixelated polarizer array has good polarization characteristics. The maximum polarization transmissivity can reach 79.3%, and the extinction ratio can arrive at 454. Furthermore, the pixelated polarizer array is integrated with the charge coupled devise chip, and the Stokes parameters can be calculated from one frame, then the degree of linear polarization and angle of linear polarization can be obtained. Thus, the polarization enhancement of image is achieved, which can be used in the anti-stealth and recognition.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2011CB302105), the National Natural Science Foundation of China (Grant Nos. 11332010, 11102201, 11372300), and the Instrument Developing Project of the Chinese Academy of Science (Grant No. YZ201265).
    [1]

    Frish V K 1949 Experientia 5 142

    [2]

    Collett M, Collett T S, Bisch S, Wehner R 1998 Nature 394 269

    [3]

    Labhart T 1999 J. Exp. Biol. 201 757

    [4]

    Shashar N, Rutledge P, Cronin T W 1996 J. Exp. Biol. 199 2077

    [5]

    Chu J, Zhao K, Zhang Q, Wang T 2008 Sens. Actuators A: Phys. 148 75

    [6]

    Chu J K, Wang Z W, Zhang Y J, Wang Y L 2012 Opt. Precision Eng. 20 2237(in Chinese)[褚金奎, 王志文, 张英杰, 王寅龙 2012 光学精密工程 20 2237]

    [7]

    Nordin G P, Meier J T, Deguzman P C, Jones M W 1999 J. Opt. Soc. Am. A 16 1168

    [8]

    Brock N J, Kimbrugh B T, Millierd J E 2011 Proc. of SPIE San Diego, California, USA, August 21, 2011 p81600W-1

    [9]

    Li X D, Tao G, Yang Y Z 2011 Opt. Laser Eng. 33 53

    [10]

    Ma Z C, Xu Z M, Peng J, Sun T Y, Chen X G, Zhao W Y, Liu S S, Wu X H, Zou C, Liu S Y 2014 Acta Phys. Sin. 63 039101(in Chinese)[马智超, 徐智谋, 彭静, 孙堂友, 陈修国, 赵文宇, 刘思思, 武兴会, 邹超, 刘世元 2014 物理学报 63 039101]

    [11]

    Kang Y L, Qiu Y, Lei Z K, Hu M 2005 Opt. Laser Eng. 43 847

    [12]

    Lei Z K, Kang Y L, Qiu Y, Hu M, Cen H 2004 Chin. Phys. Lett. 21 1377

    [13]

    Zhang Z, Zhang Q, Cheng T, Gao J, Wu X 2013 Opt. Eng. 52 103109

    [14]

    Wang M, Cen Y W, Yu X L, Hu X F, Zhu P P 2008 Acta Phys. Sin. 57 6202(in Chinese)[汪敏, 岑豫皖, 余晓流, 胡小方, 朱佩平 2008 物理学报 57 6202]

    [15]

    Tahara T, Shimozato Y, Xia P, Ito Y, Awatsuji Y, Nishio K, Ura S, Matoba O, Kubota T 2012 Opt. Express 20 19806

    [16]

    Creath K, Goldstein G 2012 Biomed. Opt. Express 3 2866

    [17]

    Gruev V 2011 Opt. Express 19 24361

    [18]

    Zhang Q C, Zhang Z G, Zhao Y, Cheng T, Wu X P 2013 Chinese Patent 201310030039.1 (2013-01-25) (in Chinese)[张青川, 张志刚, 赵旸, 程腾, 伍小平 2013 中国专刊专利申请号: 201310030039.1[2013-01-25]]

    [19]

    Zhao X, Boussaid F, Bermak A, Chigrinov V G 2011 Opt. Express 19 5565

    [20]

    Gruev V, Ortu A, Lazarus N, Spiegel J V, Engheta N 2007 Opt. Express 15 4994

    [21]

    Yang Z Y, Lu Y F 2007 Opt. Express 15 9510

    [22]

    Meng F T, Chu J K, Han Z T, Guo Q 2009 Acta Photon. Sin. 38 951(in Chinese)[孟凡涛, 褚金奎, 韩志涛, 郭庆 2009 光子学报 38 951]

    [23]

    Luo Q, Huang L H, Gu N T, Rao C H 2012 Chin. Phys. B 21 094201

    [24]

    Wang J P, Jin Y X, Ma J Y, Shao J D, Fan Z X 2010 Chin. Phys. B 19 104201

    [25]

    Yu D, Wang H, Liu H P, Wang J, Jiang Y Y, Sun X D 2011 Chin. Phys. B 20 114217

    [26]

    Zhang W F, Kong W J, Yun M J, Liu J H, Sun X 2012 Chin. Phys. B 21 094218

    [27]

    Pan P, An J M, Wang H J, Wang Y, Zhang J S, Wang L L, Dai H Q, Zhang X G, Wu Y D, Hu X W 2014 Chin. Phys. B 23 044210

    [28]

    Bokor N, Shechter R, Davidson N, Friesem A A, Hasman E 2001 Appl. Opt. 40 2076

    [29]

    Zhang N, Chu J K, Zhao K C, Meng F T 2006 Chin. J. Sens. Actuat. 19 1739(in Chinese)[张娜, 褚金奎, 赵开春, 孟凡涛 2006 传感技术学报 19 1739]

    [30]

    Xie H M, Kishimoto S, Shinya N 2000 Opt. Laser Technol. 32 361

    [31]

    Xie H M, Kishimoto S, Li Y J, Liu Q J, Zhao Y P 2009 Microelectron. Reliab. 49 727

    [32]

    Zhao Y R, Lei Z K, Xing Y M 2014 Exp. Mech. 54 45

    [33]

    Xie H M, Dai F L, An B Z, Zhang W 2000 Opt. Tech. 26 526(in Chinese)[谢惠民, 戴福隆, 岸本哲, 张维 2000 光学技术 26 526]

    [34]

    Gruev V, Perkins R 2010 IEEE International Symposium on Circuits and Systems Paris, France, May 30-June 2, 2010 p629

    [35]

    Gruev V, Perkins R, York T 2010 Opt. Express 18 19087

    [36]

    Gruev V, Spiegel J V, Engheta N 2010 Opt. Express 18 19292

  • [1]

    Frish V K 1949 Experientia 5 142

    [2]

    Collett M, Collett T S, Bisch S, Wehner R 1998 Nature 394 269

    [3]

    Labhart T 1999 J. Exp. Biol. 201 757

    [4]

    Shashar N, Rutledge P, Cronin T W 1996 J. Exp. Biol. 199 2077

    [5]

    Chu J, Zhao K, Zhang Q, Wang T 2008 Sens. Actuators A: Phys. 148 75

    [6]

    Chu J K, Wang Z W, Zhang Y J, Wang Y L 2012 Opt. Precision Eng. 20 2237(in Chinese)[褚金奎, 王志文, 张英杰, 王寅龙 2012 光学精密工程 20 2237]

    [7]

    Nordin G P, Meier J T, Deguzman P C, Jones M W 1999 J. Opt. Soc. Am. A 16 1168

    [8]

    Brock N J, Kimbrugh B T, Millierd J E 2011 Proc. of SPIE San Diego, California, USA, August 21, 2011 p81600W-1

    [9]

    Li X D, Tao G, Yang Y Z 2011 Opt. Laser Eng. 33 53

    [10]

    Ma Z C, Xu Z M, Peng J, Sun T Y, Chen X G, Zhao W Y, Liu S S, Wu X H, Zou C, Liu S Y 2014 Acta Phys. Sin. 63 039101(in Chinese)[马智超, 徐智谋, 彭静, 孙堂友, 陈修国, 赵文宇, 刘思思, 武兴会, 邹超, 刘世元 2014 物理学报 63 039101]

    [11]

    Kang Y L, Qiu Y, Lei Z K, Hu M 2005 Opt. Laser Eng. 43 847

    [12]

    Lei Z K, Kang Y L, Qiu Y, Hu M, Cen H 2004 Chin. Phys. Lett. 21 1377

    [13]

    Zhang Z, Zhang Q, Cheng T, Gao J, Wu X 2013 Opt. Eng. 52 103109

    [14]

    Wang M, Cen Y W, Yu X L, Hu X F, Zhu P P 2008 Acta Phys. Sin. 57 6202(in Chinese)[汪敏, 岑豫皖, 余晓流, 胡小方, 朱佩平 2008 物理学报 57 6202]

    [15]

    Tahara T, Shimozato Y, Xia P, Ito Y, Awatsuji Y, Nishio K, Ura S, Matoba O, Kubota T 2012 Opt. Express 20 19806

    [16]

    Creath K, Goldstein G 2012 Biomed. Opt. Express 3 2866

    [17]

    Gruev V 2011 Opt. Express 19 24361

    [18]

    Zhang Q C, Zhang Z G, Zhao Y, Cheng T, Wu X P 2013 Chinese Patent 201310030039.1 (2013-01-25) (in Chinese)[张青川, 张志刚, 赵旸, 程腾, 伍小平 2013 中国专刊专利申请号: 201310030039.1[2013-01-25]]

    [19]

    Zhao X, Boussaid F, Bermak A, Chigrinov V G 2011 Opt. Express 19 5565

    [20]

    Gruev V, Ortu A, Lazarus N, Spiegel J V, Engheta N 2007 Opt. Express 15 4994

    [21]

    Yang Z Y, Lu Y F 2007 Opt. Express 15 9510

    [22]

    Meng F T, Chu J K, Han Z T, Guo Q 2009 Acta Photon. Sin. 38 951(in Chinese)[孟凡涛, 褚金奎, 韩志涛, 郭庆 2009 光子学报 38 951]

    [23]

    Luo Q, Huang L H, Gu N T, Rao C H 2012 Chin. Phys. B 21 094201

    [24]

    Wang J P, Jin Y X, Ma J Y, Shao J D, Fan Z X 2010 Chin. Phys. B 19 104201

    [25]

    Yu D, Wang H, Liu H P, Wang J, Jiang Y Y, Sun X D 2011 Chin. Phys. B 20 114217

    [26]

    Zhang W F, Kong W J, Yun M J, Liu J H, Sun X 2012 Chin. Phys. B 21 094218

    [27]

    Pan P, An J M, Wang H J, Wang Y, Zhang J S, Wang L L, Dai H Q, Zhang X G, Wu Y D, Hu X W 2014 Chin. Phys. B 23 044210

    [28]

    Bokor N, Shechter R, Davidson N, Friesem A A, Hasman E 2001 Appl. Opt. 40 2076

    [29]

    Zhang N, Chu J K, Zhao K C, Meng F T 2006 Chin. J. Sens. Actuat. 19 1739(in Chinese)[张娜, 褚金奎, 赵开春, 孟凡涛 2006 传感技术学报 19 1739]

    [30]

    Xie H M, Kishimoto S, Shinya N 2000 Opt. Laser Technol. 32 361

    [31]

    Xie H M, Kishimoto S, Li Y J, Liu Q J, Zhao Y P 2009 Microelectron. Reliab. 49 727

    [32]

    Zhao Y R, Lei Z K, Xing Y M 2014 Exp. Mech. 54 45

    [33]

    Xie H M, Dai F L, An B Z, Zhang W 2000 Opt. Tech. 26 526(in Chinese)[谢惠民, 戴福隆, 岸本哲, 张维 2000 光学技术 26 526]

    [34]

    Gruev V, Perkins R 2010 IEEE International Symposium on Circuits and Systems Paris, France, May 30-June 2, 2010 p629

    [35]

    Gruev V, Perkins R, York T 2010 Opt. Express 18 19087

    [36]

    Gruev V, Spiegel J V, Engheta N 2010 Opt. Express 18 19292

  • [1] Ma Jing, Liu Dong-Dong, Wang Ji-Cheng, Feng Yan. Anisotropic polarization beam splitter based on metal slit array. Acta Physica Sinica, 2018, 67(9): 094102. doi: 10.7498/aps.67.20172292
    [2] Ling Jin-Zhong, Huang Yuan-Shen, Wang Zhong-Fei, Wang Qi, Zhang Da-Wei, Zhuang Song-Lin. Research on the characteristics of tunable structure nanowire-grid polarizer. Acta Physica Sinica, 2013, 62(14): 144214. doi: 10.7498/aps.62.144214
    [3] Zhu Guang-Xi, Huang De-Xiu, Zhang Xin-Liang, Li Pei-Li. Wavelength converter based on cross-gain modulation in multi-electrode single-port-coupled semiconductor optical amplifier. Acta Physica Sinica, 2006, 55(6): 2746-2750. doi: 10.7498/aps.55.2746
    [4] Qi Yun-Ping, Nan Xiang-Hong, Bai Yu-Long, Wang Xiang-Xian. All-optical diode of subwavelength single slit with multi-pair groove structure based on SPPs-CDEW hybrid model. Acta Physica Sinica, 2017, 66(11): 117102. doi: 10.7498/aps.66.117102
    [5] Chu Jin-Kui, Wang Qian-Yi, Wang Zhi-Wen, Wang Li-Ding. Extraordinary optical transmission through bilayer metallic nano-grating for s-polarization light. Acta Physica Sinica, 2015, 64(16): 164206. doi: 10.7498/aps.64.164206
    [6] Huang Chong, Chen Hai-Qing, Liao Zhao-Shu, Zhao Shuang. Light attenuation coefficient of polarization attenuator at high attenuation level. Acta Physica Sinica, 2010, 59(3): 1756-1761. doi: 10.7498/aps.59.1756
    [7] Wu Fu-Quan, Peng Zhi-Hong, Zhang Chun-Min, Zhao Bao-Chang, Li Ying-Cai. The transmittance of Savart polariscope in polarization interference imaging spectrometer. Acta Physica Sinica, 2006, 55(12): 6374-6381. doi: 10.7498/aps.55.6374
    [8] Du Juan, Zhang Chun-Min, Sun Yao, Zhao Bao-Chang. Analysis of the transmittance of modified Savart polariscope in the static large field of view polarization interference imaging spectrometer. Acta Physica Sinica, 2008, 57(10): 6311-6318. doi: 10.7498/aps.57.6311
    [9] Yin Cheng, Xu Tian, Chen Bing-Yan, Han Qing-Bang. Polarization characteristics of the lattice resonance of metal nanoparticle array. Acta Physica Sinica, 2015, 64(16): 164202. doi: 10.7498/aps.64.164202
    [10] Zhao Hua-Jun, Yang Shou-Liang, Zhang Dong, Liang Kang-You, Cheng Zheng-Fu, Shi Dong-Ping. Design of polarizing beam splitters based on subwavelength metal grating. Acta Physica Sinica, 2009, 58(9): 6236-6242. doi: 10.7498/aps.58.6236
  • Citation:
Metrics
  • Abstract views:  676
  • PDF Downloads:  729
  • Cited By: 0
Publishing process
  • Received Date:  26 February 2014
  • Accepted Date:  10 April 2014
  • Published Online:  20 September 2014

Fabrication of pixelated polarizer array and its application in polarization enhancement

  • 1. CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China;
  • 2. Nanofabrication Laboratory, National Center for Nanoscience and Technology, Beijing 100190, China
Fund Project:  Project supported by the National Basic Research Program of China (Grant No. 2011CB302105), the National Natural Science Foundation of China (Grant Nos. 11332010, 11102201, 11372300), and the Instrument Developing Project of the Chinese Academy of Science (Grant No. YZ201265).

Abstract: Pixelated polarizer array can be used in the real-time measurement of Stokes parameters. In this paper, pixelated polarizer array based on the aluminum nano-grating is designed and fabricated, and the fabrication technology is electron beam exposure technology. The size of each unit is 7.4 μm, and the polarization directions of each adjacent 2×2 units in the polarizer array are 0, π/4, π/2, and 3π/4. The period, duty cycle, depth and surface type of the grating are 140 nm, 0.5, 100 nm and rectangle type, respectively. The scanning electron micrographs of the pixelated polarizer array show that there is no disconnection, cross and pollution on the fabricated metal nano-grating lines. The nano-grating lines are straight and uniform in thickness, and the surface type of the grating is ideal rectangular type. The polarization optical micrographs show that the pixelated polarizer array has good polarization characteristics. The maximum polarization transmissivity can reach 79.3%, and the extinction ratio can arrive at 454. Furthermore, the pixelated polarizer array is integrated with the charge coupled devise chip, and the Stokes parameters can be calculated from one frame, then the degree of linear polarization and angle of linear polarization can be obtained. Thus, the polarization enhancement of image is achieved, which can be used in the anti-stealth and recognition.

Reference (36)

Catalog

    /

    返回文章
    返回