Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulation and calculation of the absorbing microwave properties of carbon nanotube composite coating

Chen Ming-Dong Jie Xiao-Hua Zhang Hai-Yan

Simulation and calculation of the absorbing microwave properties of carbon nanotube composite coating

Chen Ming-Dong, Jie Xiao-Hua, Zhang Hai-Yan
PDF
Get Citation
  • How to optimize the absorbing microwave properties by using the parameters of carbon nanotube composite coating is a hotspot in the study of electromagnetic shielding. However, the study on the influence of coating parameters on absorbing microwave properties mainly stays in the stage of experimental study, and the influence of structure parameters of carbon nanotube on absorbing microwave properties has not been reported yet. Therefore, it is significant to study the method of optimizing the absorbing microwave properties of materials through micro-structure of the carbon nanotube composite coating. Based on an equivalent circuit of multi-wall carbon nanotubes, using the relationship between the parameters of each element in the equivalent circuit to study the mechanism of carbon nanotube loss microwave, an expression of absorbing microwave properties about carbon nanotube structure parameters is derived. According to the expression, the microwave reflection ratio of coating is calculated and simulated by Matlab software, which is affected by the length, diameter and coating thickness of carbon nanotube and the number of carbon nanotubes. The simulation result shows that the variation of reflection ratio curve of coating with the number of carbon nanotubes is consistent with the experimental results. The number of carbon nanotubes and the thickness of coating are the vital parameters, which influence the absorption intensity and absorption position, while the diameter and length of carbon nanotube are the vital parameters, which influence the absorption intensity.
    • Funds: Project supported by the Scinece and Technology Program of Guangdong Province, China (Grant No. 2009B090300017) and the International Cooperation Program of Guangdong Province, China (Grant No. 2011B050300017).
    [1]

    Pan R Q 2011 Chin. Phys. Lett. 28 066104

    [2]

    Moradi A 2013 Chin. Phys. B 22 064201

    [3]

    Xu Y G, Zhang D Y, Cai J, Yuan L, Zhang W Q 2012 J. Mater. Sci. Technol. 28 34

    [4]

    Zhao D L, Zeng X W, Shen Z M 2005 Acta Phys. Sin. 54 3878 (in Chinese) [赵东林, 曾宪伟, 沈曾民 2005 物理学报 54 3878]

    [5]

    Wang J, Li H F, Huang Y H, Yu H B, Zhang Y 2010 Acta Phys. Sin. 59 1946 (in Chinese) [王建, 李会峰, 黄运华, 余海波, 张跃 2010 物理学报 59 1946]

    [6]

    Roberts J A, Imholt T, Ye Z, Dyke C A, Price D W, Tour J M 2004 J. Appl. Phys. 95 4352

    [7]

    Fan Z J, Luo G H, Zhang Z F 2006 Mater. Sci. Eng. B 132 85

    [8]

    Xu M H, Qi X S, Zhong W, Ye X J, Deng Y, Au C T, Jin C Q, Yang Z X, Du Y W 2009 Chin. Phys. Lett. 26 116103

    [9]

    Sun H G, Zhou Z X, Qin R H, Yuan C X, Zhang H F, Lu Y 2007 J. Harbin Inst. Technol. 39 474 (in Chinese) [孙洪国, 周忠祥, 秦汝虎, 袁承勋, 张海丰, 卢颖 2007 哈尔滨工业大学学报 39 474]

    [10]

    Hua S C, Wang H G, Wang L Y, Liu G, Zhao R X, Yao J X 2009 Acta Phys. Sin. 58 6534 (in Chinese) [华绍春, 王汉功, 汪刘应, 刘顾, 赵瑞星, 姚建勋 2009 物理学报 58 6534]

    [11]

    Zhu H, Lin H, Guo H F, Yu L F 2007 Mater. Sci. Eng. B 138 101

    [12]

    Wang Z P, Zhang Z H, Qin S M, Wang L H, Wang X X 2008 Mater. Des. 29 1777

    [13]

    Peng Z H, Peng J C, Peng Y F, Wang J Y 2008 Chin. Sci. Bull. 52 3497

    [14]

    Li H, Yin W Y, Banerjee K, Mao T F 2008 IEEE Trans. Electron Dev. 55 1328

    [15]

    Zhang K L, Tian B, Zhu X S, Wang F, Wei J 2012 Nanoscale Res. Lett. 7 138

    [16]

    Han G Z, Chen M D, Guo P S, Li S X 2007 South China Univ. Technol. 35 52 (in Chinese) [韩光泽, 陈明东, 郭平生, 李绍新 2007 华南理工大学学报 35 52]

    [17]

    Prasad A, Prasad K 2007 Physica B 396 132

    [18]

    Peng Z H 2010 Ph. D. Dissertation (Changsha: Hunan University) (in Chinese) [彭志华 2010 博士学位论文 (长沙: 湖南大学)]

    [19]

    Yellampalli S 2011 Carbon Nanotubes Synthesis Characterization Applications (Croatia: InTech Press) pp265–278

  • [1]

    Pan R Q 2011 Chin. Phys. Lett. 28 066104

    [2]

    Moradi A 2013 Chin. Phys. B 22 064201

    [3]

    Xu Y G, Zhang D Y, Cai J, Yuan L, Zhang W Q 2012 J. Mater. Sci. Technol. 28 34

    [4]

    Zhao D L, Zeng X W, Shen Z M 2005 Acta Phys. Sin. 54 3878 (in Chinese) [赵东林, 曾宪伟, 沈曾民 2005 物理学报 54 3878]

    [5]

    Wang J, Li H F, Huang Y H, Yu H B, Zhang Y 2010 Acta Phys. Sin. 59 1946 (in Chinese) [王建, 李会峰, 黄运华, 余海波, 张跃 2010 物理学报 59 1946]

    [6]

    Roberts J A, Imholt T, Ye Z, Dyke C A, Price D W, Tour J M 2004 J. Appl. Phys. 95 4352

    [7]

    Fan Z J, Luo G H, Zhang Z F 2006 Mater. Sci. Eng. B 132 85

    [8]

    Xu M H, Qi X S, Zhong W, Ye X J, Deng Y, Au C T, Jin C Q, Yang Z X, Du Y W 2009 Chin. Phys. Lett. 26 116103

    [9]

    Sun H G, Zhou Z X, Qin R H, Yuan C X, Zhang H F, Lu Y 2007 J. Harbin Inst. Technol. 39 474 (in Chinese) [孙洪国, 周忠祥, 秦汝虎, 袁承勋, 张海丰, 卢颖 2007 哈尔滨工业大学学报 39 474]

    [10]

    Hua S C, Wang H G, Wang L Y, Liu G, Zhao R X, Yao J X 2009 Acta Phys. Sin. 58 6534 (in Chinese) [华绍春, 王汉功, 汪刘应, 刘顾, 赵瑞星, 姚建勋 2009 物理学报 58 6534]

    [11]

    Zhu H, Lin H, Guo H F, Yu L F 2007 Mater. Sci. Eng. B 138 101

    [12]

    Wang Z P, Zhang Z H, Qin S M, Wang L H, Wang X X 2008 Mater. Des. 29 1777

    [13]

    Peng Z H, Peng J C, Peng Y F, Wang J Y 2008 Chin. Sci. Bull. 52 3497

    [14]

    Li H, Yin W Y, Banerjee K, Mao T F 2008 IEEE Trans. Electron Dev. 55 1328

    [15]

    Zhang K L, Tian B, Zhu X S, Wang F, Wei J 2012 Nanoscale Res. Lett. 7 138

    [16]

    Han G Z, Chen M D, Guo P S, Li S X 2007 South China Univ. Technol. 35 52 (in Chinese) [韩光泽, 陈明东, 郭平生, 李绍新 2007 华南理工大学学报 35 52]

    [17]

    Prasad A, Prasad K 2007 Physica B 396 132

    [18]

    Peng Z H 2010 Ph. D. Dissertation (Changsha: Hunan University) (in Chinese) [彭志华 2010 博士学位论文 (长沙: 湖南大学)]

    [19]

    Yellampalli S 2011 Carbon Nanotubes Synthesis Characterization Applications (Croatia: InTech Press) pp265–278

  • [1] Huang Yun-Hua, Yu Hai-Bo, Wang Jian, Li Hui-Feng, Zhang Yue. Microwave absorbing properties of composite coating by carbon nanotube and nanoscaled tetrapod-shaped ZnO. Acta Physica Sinica, 2010, 59(3): 1946-1951. doi: 10.7498/aps.59.1946
    [2] Cao Jia-Wei, Huang Yun-Hua, Liao Qing-Liang, Deng Zhan-Qiang, Zhang Yue. Research on electromagnetic wave absorbing properties of nano tetraleg ZnO. Acta Physica Sinica, 2008, 57(6): 3641-3645. doi: 10.7498/aps.57.3641
    [3] Zhang Xiao-Li, Lin Shu-Yu, Fu Zhi-Qiang, Wang Yong. Study on resonance frequency and equivalent circuit parameters of a thin disk in flexural vibration. Acta Physica Sinica, 2013, 62(3): 034301. doi: 10.7498/aps.62.034301
    [4] Bai Chun-Jiang, Li Jian-Qing, Hu Yu-Lu, Yang Zhong-Hai, Li Bin. Calculation of beam-wave interaction of coupled-cavity TWT using equivalent circuit model. Acta Physica Sinica, 2012, 61(17): 178401. doi: 10.7498/aps.61.178401
    [5] Li Yu-Han, Deng Lian-Wen, Luo Heng, He Long-Hui, He Jun, Xu Yun-Chao, Huang Sheng-Xiang. Equivalent circuit model and microwave reflection loss mechanism of double-layer spiral-ring metasurface embedded composite microwave absorber. Acta Physica Sinica, 2019, 68(9): 095201. doi: 10.7498/aps.68.20181960
    [6] Hua Shao-Chun, Wang Han-Gong, Wang Liu-Ying, Liu Gu, Zhao Rui-Xing, Yao Jian-Xun. Absorption properties of micro-plasma sprayed carbon nanotube-nanostructure Al2O3-TiO2 composite coatings. Acta Physica Sinica, 2009, 58(9): 6534-6541. doi: 10.7498/aps.58.6534
    [7] He Yan-Fei, Gong Rong-Zhou, Wang Xian, Zhao Qiang. Study on equivalent electromagnetic parameters and absorbing properties of honeycomb-structured absorbing materials. Acta Physica Sinica, 2008, 57(8): 5261-5266. doi: 10.7498/aps.57.5261
    [8] Huang Ya-Ping, Yun Feng, Ding Wen, Wang Yue, Wang Hong, Zhao Yu-Kun, Zhang Ye, Guo Mao-Feng, Hou Xun, Liu Shuo. The reflectivity and ohmic contact resistivity of Ni/Ag/Ti/Au in contact with p-GaN. Acta Physica Sinica, 2014, 63(12): 127302. doi: 10.7498/aps.63.127302
    [9] Liu Shun-Hua, Cui Xiao-Dong, Zhao Yan-Bo. Study on the electromagnetic and absorption properties of the mixture filled with carbon coated EPS. Acta Physica Sinica, 2006, 55(11): 5764-5768. doi: 10.7498/aps.55.5764
    [10] Liu Shi-Yuan, Zhang Chuan-Wei, Gu Hua-Yong, Shen Hong-Wei. A fast algorithm for reflectivity calculation of micro/nano deep trench structures by corrected effective medium approximation. Acta Physica Sinica, 2008, 57(9): 5996-6001. doi: 10.7498/aps.57.5996
  • Citation:
Metrics
  • Abstract views:  619
  • PDF Downloads:  598
  • Cited By: 0
Publishing process
  • Received Date:  20 October 2013
  • Accepted Date:  29 November 2013
  • Published Online:  20 March 2014

Simulation and calculation of the absorbing microwave properties of carbon nanotube composite coating

  • 1. School of Material and Energy, Guangdong University of Technology, Guangzhou 510006, China;
  • 2. Physics Teaching and Experiment Center of Campus of High Education Mega Center, South China University of Technology, Guangzhou 510006, China
Fund Project:  Project supported by the Scinece and Technology Program of Guangdong Province, China (Grant No. 2009B090300017) and the International Cooperation Program of Guangdong Province, China (Grant No. 2011B050300017).

Abstract: How to optimize the absorbing microwave properties by using the parameters of carbon nanotube composite coating is a hotspot in the study of electromagnetic shielding. However, the study on the influence of coating parameters on absorbing microwave properties mainly stays in the stage of experimental study, and the influence of structure parameters of carbon nanotube on absorbing microwave properties has not been reported yet. Therefore, it is significant to study the method of optimizing the absorbing microwave properties of materials through micro-structure of the carbon nanotube composite coating. Based on an equivalent circuit of multi-wall carbon nanotubes, using the relationship between the parameters of each element in the equivalent circuit to study the mechanism of carbon nanotube loss microwave, an expression of absorbing microwave properties about carbon nanotube structure parameters is derived. According to the expression, the microwave reflection ratio of coating is calculated and simulated by Matlab software, which is affected by the length, diameter and coating thickness of carbon nanotube and the number of carbon nanotubes. The simulation result shows that the variation of reflection ratio curve of coating with the number of carbon nanotubes is consistent with the experimental results. The number of carbon nanotubes and the thickness of coating are the vital parameters, which influence the absorption intensity and absorption position, while the diameter and length of carbon nanotube are the vital parameters, which influence the absorption intensity.

Reference (19)

Catalog

    /

    返回文章
    返回