Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study on surface relief related to reverse martensitic transformation in Mn-based high-temperature antiferromagnetic shape memory alloy

Yuan Feng Liu Chuan Geng Zheng Cui Yan-Guang Wang Lin Wan Jian-Feng Zhang Ji-Hua Rong Yong-Hua

Study on surface relief related to reverse martensitic transformation in Mn-based high-temperature antiferromagnetic shape memory alloy

Yuan Feng, Liu Chuan, Geng Zheng, Cui Yan-Guang, Wang Lin, Wan Jian-Feng, Zhang Ji-Hua, Rong Yong-Hua
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Evolution of surface relief and its intrinsic mechanism associated with martensitic transformation (MT) during heating and cooling in Mn79.5Fe15.6Cu4.9 high-temperature antiferromagnetic shape memory alloy (SMA) have been investigated in nano-scale by means of in-situ atomic force microscopy (AFM), X-ray diffraction (XRD), and dynamic mechanical analyzer (DMA). Experimental results show that the N-type surface relief originates from the reverse MT and is completely made of matrix which is different from the conventional ones. The reverse MT exhibits untwinning shear and the reverse shearing of twinned martensites mainly contribute to the surface relief. The measured surface relief angles are less than 1°, which are determined by the small difference of lattice constants between fcc and fct structures. Surface relief has a good recovery property because of the crystallographic reversibility rule in SMAs, implying that this kind of alloy has a good surface morphology memory effect.
    • Funds: Project supported by National Natural Science Foundation of China (Grant No. 51171112), the National Key Basic Research Program (Grant No. 2012CB619400), and the National Training Programs of Innovation and Entrepreneurship for Undergraduates, China (Grant No. 201310248037).
    [1]

    Gong C W, Wang Y N, Yang D Z 2006 Acta Phys. Sin. 55 2877 (in Chinese) [宫长伟, 王佚农, 杨大智 2006 物理学报 55 2877]

    [2]

    Manosa L, Gonzalez-Alonso D, Planes A, Bonnot E, Barrio M, Tamarit JL, Aksoy S, Acet M 2010 Nat. Mater. 9 478

    [3]

    Peng W Y, Tan J, Zhang A S, Yan M M 2010 Acta Phys. Sin. 59 8244 (in Chinese) [彭文屹, 覃金, 章爱生, 严明明 2010 物理学报 59 8244]

    [4]

    Zhang Y Z, Cao J M, Tan C L, Cao Y J, Cai W 2014 Chin. Phys. B 23 037504

    [5]

    Wang D H, Han Z D, Xuan H C, Ma S C, Chen S Y, Zhang C L, Du YW 2013 Chin. Phys. B 22 077506

    [6]

    Zhou Y, Wang H B, Wang G P 2011 Acta Phys. Sin. 60 107501 (in Chinese) [周英, 王海波, 王古平 2011 物理学报 60 107501]

    [7]

    Efstathiou C, Sehitoglu H, Carroll J, Lambros J, Maier HJ 2008 Acta Mater. 56 3791

    [8]

    Omori T, Sutou Y, Oikawa K, Kainuma R, Ishida K 2005 Scripta Mater. 52 565

    [9]

    Zhang J H 2005 Curr Opin Solid State & Mater Sci. 9 326

    [10]

    Zhang J H, Peng W Y, Hsu TY 2008 Appl. Phys. Lett. 93 122510

    [11]

    Peng W Y 2007 Ph. D Dissertation (Shanghai: Shanghai Jiao Tong University) (in Chinese) [彭文屹 2007 博士学位论文(上海: 上海交通大学)]

    [12]

    Tsunoda Y, Wakabayashi N 1981 J. Phys. Soc. Jpn. 50 3341

    [13]

    Oguchi T, Freeman AJ 1984 J. Magn. Magn. Mater. 1-2 L1

    [14]

    Xu Zuyao 1999 Martensitic Transformation and Martensite (2rd Ed.) (Beijing: Science Press) p9 (in Chinese) [徐祖耀 1999 马氏体相变与马氏体(第2版) (北京:科学出版社)第9页]

    [15]

    Fang H S 1999 Bainitic Transformaiton (Beijing: Science Press) p254 (in Chinese) [方鸿生 1999 贝氏体相变(北京: 科学出版社) 第254页]

    [16]

    Zhang J H, Rong Y H, Hsu TY 2010 varPhil Magazine. 90 159

    [17]

    Ito K, Tsukishima M, Kobayashi M 1983 JIM 24 487

    [18]

    Wang L T, Ge T S 1988 Acta Metall Sin. A 24 147 (in Chinese) [王力田, 葛庭燧 1988 金属学报 24 147]

    [19]

    Waitz T, Karnthaler H P 1997 Acta Mater. 45 837

    [20]

    Bergeon N, Kajiwara S, Kikuchi T 2000 Acta Mater. 48 4053

    [21]

    Reinhold M, Waston C, Knowlton WB, M€ullner P 2010 J Appl Phys. 107 113501

    [22]

    Liu D Z, Dunne D 2003 Scr Mater. 48 1611

    [23]

    Yang Z G, Fang H S, Wang J J, Li C M, Zheng Y K 1995 Phys Rev. B 52 7879

    [24]

    Tian Q C, Yin F X, Sakaguchi T, Nagai K 2006 Acta Mater. 54 1805

    [25]

    Shimizu K, Okumura K, Kubo H 1982 Trans. JIM 23 53

    [26]

    Wang Y, Zhang J H 2007 Acta Mater. 55 5169

    [27]

    Artemev A, Wang Y, Khachaturyan AQ 2000 Acta Mater. 48 2503

    [28]

    Liu D Z, Kajiwara S, Kikuchi T, Shinya N 2003 Philos Mag. 83 2875

  • [1]

    Gong C W, Wang Y N, Yang D Z 2006 Acta Phys. Sin. 55 2877 (in Chinese) [宫长伟, 王佚农, 杨大智 2006 物理学报 55 2877]

    [2]

    Manosa L, Gonzalez-Alonso D, Planes A, Bonnot E, Barrio M, Tamarit JL, Aksoy S, Acet M 2010 Nat. Mater. 9 478

    [3]

    Peng W Y, Tan J, Zhang A S, Yan M M 2010 Acta Phys. Sin. 59 8244 (in Chinese) [彭文屹, 覃金, 章爱生, 严明明 2010 物理学报 59 8244]

    [4]

    Zhang Y Z, Cao J M, Tan C L, Cao Y J, Cai W 2014 Chin. Phys. B 23 037504

    [5]

    Wang D H, Han Z D, Xuan H C, Ma S C, Chen S Y, Zhang C L, Du YW 2013 Chin. Phys. B 22 077506

    [6]

    Zhou Y, Wang H B, Wang G P 2011 Acta Phys. Sin. 60 107501 (in Chinese) [周英, 王海波, 王古平 2011 物理学报 60 107501]

    [7]

    Efstathiou C, Sehitoglu H, Carroll J, Lambros J, Maier HJ 2008 Acta Mater. 56 3791

    [8]

    Omori T, Sutou Y, Oikawa K, Kainuma R, Ishida K 2005 Scripta Mater. 52 565

    [9]

    Zhang J H 2005 Curr Opin Solid State & Mater Sci. 9 326

    [10]

    Zhang J H, Peng W Y, Hsu TY 2008 Appl. Phys. Lett. 93 122510

    [11]

    Peng W Y 2007 Ph. D Dissertation (Shanghai: Shanghai Jiao Tong University) (in Chinese) [彭文屹 2007 博士学位论文(上海: 上海交通大学)]

    [12]

    Tsunoda Y, Wakabayashi N 1981 J. Phys. Soc. Jpn. 50 3341

    [13]

    Oguchi T, Freeman AJ 1984 J. Magn. Magn. Mater. 1-2 L1

    [14]

    Xu Zuyao 1999 Martensitic Transformation and Martensite (2rd Ed.) (Beijing: Science Press) p9 (in Chinese) [徐祖耀 1999 马氏体相变与马氏体(第2版) (北京:科学出版社)第9页]

    [15]

    Fang H S 1999 Bainitic Transformaiton (Beijing: Science Press) p254 (in Chinese) [方鸿生 1999 贝氏体相变(北京: 科学出版社) 第254页]

    [16]

    Zhang J H, Rong Y H, Hsu TY 2010 varPhil Magazine. 90 159

    [17]

    Ito K, Tsukishima M, Kobayashi M 1983 JIM 24 487

    [18]

    Wang L T, Ge T S 1988 Acta Metall Sin. A 24 147 (in Chinese) [王力田, 葛庭燧 1988 金属学报 24 147]

    [19]

    Waitz T, Karnthaler H P 1997 Acta Mater. 45 837

    [20]

    Bergeon N, Kajiwara S, Kikuchi T 2000 Acta Mater. 48 4053

    [21]

    Reinhold M, Waston C, Knowlton WB, M€ullner P 2010 J Appl Phys. 107 113501

    [22]

    Liu D Z, Dunne D 2003 Scr Mater. 48 1611

    [23]

    Yang Z G, Fang H S, Wang J J, Li C M, Zheng Y K 1995 Phys Rev. B 52 7879

    [24]

    Tian Q C, Yin F X, Sakaguchi T, Nagai K 2006 Acta Mater. 54 1805

    [25]

    Shimizu K, Okumura K, Kubo H 1982 Trans. JIM 23 53

    [26]

    Wang Y, Zhang J H 2007 Acta Mater. 55 5169

    [27]

    Artemev A, Wang Y, Khachaturyan AQ 2000 Acta Mater. 48 2503

    [28]

    Liu D Z, Kajiwara S, Kikuchi T, Shinya N 2003 Philos Mag. 83 2875

  • [1] Zhang Yu-Xiang, Peng Yi-Tian, Lang Hao-Jie. Controllable nano-friction of graphene surface by fabricating nanoscale patterning based on atomic force microscopy. Acta Physica Sinica, 2020, 69(10): 106801. doi: 10.7498/aps.69.20200124
    [2] Ge Si-Ping, Zhu Xing, Yang Wei-Sheng. The manipulation of Cu subsurface interstitial atoms with scanning tunneling microscope. Acta Physica Sinica, 2005, 54(2): 824-831. doi: 10.7498/aps.54.824
    [3] Xue Hui, Ma Zong-Min, Shi Yun-Bo, Tang Jun, Xue Chen-Yang, Liu Jun, Li Yan-Jun. Magnetic exchange force microscopy using ferromagnetic resonance . Acta Physica Sinica, 2013, 62(18): 180704. doi: 10.7498/aps.62.180704
    [4] Wang Qing-Zhou, Lu Dong-Mei, Cui Chun-Xiang, Han Fu-Sheng. Effects of quenched-in vacancies on the reverse martensitic phase transformation temperature of the Cu-11.9Al-2.5Mn(wt%) shape memory alloy studied by internal friction. Acta Physica Sinica, 2008, 57(11): 7083-7087. doi: 10.7498/aps.57.7083
    [5] Ou Gu-Ping, Song Zhen, Gui Wen-Ming, Zhang Fu-Jia. Surface analysis of LiBq4/ITO and LiBq4/CuPc/ITO using atomic force microscopy and x-ray photoelectron spectroscopy. Acta Physica Sinica, 2005, 54(12): 5717-5722. doi: 10.7498/aps.54.5717
    [6] WANG HAO, ZHAO XUE-YING, YANG WEI-SHENG. ADSORPTION OF ASPARTIC ACID ON Cu(001) STUDIED BY SCANNING TUNNELING MICROSCOPY. Acta Physica Sinica, 2000, 49(7): 1316-1320. doi: 10.7498/aps.49.1316
    [7] YAN HAO, ZHAO XUE-YING, ZHAO RU-GUANG, YANG WEI-SHENG. ADSORPTION OF GLYCINE ON Cu(111) INVESTIGATED BY SCANNING TUNNELING MICROSCOPY. Acta Physica Sinica, 2001, 50(10): 1964-1969. doi: 10.7498/aps.50.1964
    [8] Huang Ren-Zhong, Liu Liu, Yang Wen-Jing. STM tip-induced atomic motion on the top of film supported by a metal substrate. Acta Physica Sinica, 2011, 60(11): 116803. doi: 10.7498/aps.60.116803
    [9] Sun Run-Guang, Qi Hao, Zhang Jing. . Acta Physica Sinica, 2002, 51(6): 1203-1207. doi: 10.7498/aps.51.1203
    [10] Jing Chao, Li Zhe, Chen Ji-Ping, Lu Yu-Ming, Cao Shi-Xun, Zhang Jin-Cang. Investigation of martensitic transition and inverse magnetocaloric property in Ni-Mn-Sn Heusler alloys. Acta Physica Sinica, 2008, 57(6): 3780-3785. doi: 10.7498/aps.57.3780
    [11] Pang Zong-Qiang, Zhang Yue, Rong Zhou, Jiang Bing, Liu Rui-Lan, Tang Chao. Adsorption and dissociation of water on oxygen pre-covered Cu (110) observed with scanning tunneling microscopy. Acta Physica Sinica, 2016, 65(22): 226801. doi: 10.7498/aps.65.226801
    [12] Zhang Yuan-Lei, Li Zhe, Xu Kun, Jing Chao. Martensitic transformation and magnetic features in Ni-Fe-Mn-In Heusler alloy. Acta Physica Sinica, 2015, 64(6): 066402. doi: 10.7498/aps.64.066402
    [13] Zhang Xiang-Jun, Meng Yong-Gang, Wen Shi-Zhu. On micro scanning forces under the coupling deformation of atomic force microscope probe. Acta Physica Sinica, 2004, 53(3): 728-733. doi: 10.7498/aps.53.728
    [14] Gao Shu-Xia, Wang Wen-Hong, Liu Zhu-Hong, Chen Jing-Lan, Wu Guang-Heng, Liang Ting, Xu Hui-Bin, CaiWei, ZhengYu Feng, Zhao Lian-Cheng. . Acta Physica Sinica, 2002, 51(2): 332-336. doi: 10.7498/aps.51.332
    [15] Wang Wen-Hong, Liu Zhu-Hong, Chen Jing-Lan, Wu Guang-Heng, Liang Ting, Xu Hui-Bin, Chai Wei, Zheng Yu-Feng, Zhao Lian-Cheng. . Acta Physica Sinica, 2002, 51(3): 635-639. doi: 10.7498/aps.51.635
    [16] Y. L. MA, T. S. KE. DISLOCATION DAMPING PEAKS APPEARING WITHIN THE TEMPERATURE RANGE FOR THE DIRECT AND INVERSE MARTENSITIC TRANSFORMATIONS OF AN IRON-MANGANESE ALLOY. Acta Physica Sinica, 1964, 20(9): 909-918. doi: 10.7498/aps.20.909
    [17] Dai Xue-Fang, Liu He-Yan, Yan Li-Qin, Qu Jing-Ping, Li Yang-Xian, Chen Jing-Lan, Wu Guang-Heng. Structure and martensitic transformation of the CoNiZ alloys. Acta Physica Sinica, 2006, 55(5): 2534-2538. doi: 10.7498/aps.55.2534
    [18] Hu Hai-Long, Zhang Kun, Wang Zhen-Xing, Wang Xiao-Ping. Study of the transport properties of self-assembled alkanethiol monolayer by conduction atomic force microscopy. Acta Physica Sinica, 2006, 55(3): 1430-1434. doi: 10.7498/aps.55.1430
    [19] Fan Kang-Qi, Jia Jian-Yuan, Zhu Ying-Min, Liu Xiao-Yuan. Dynamic model of atomic force microscopy in tapping-mode. Acta Physica Sinica, 2007, 56(11): 6345-6351. doi: 10.7498/aps.56.6345
    [20] Zhao Hua-Bo, Li Zhen, Li Rui, Zhang Zhao-Hui, Zhang Yan, Liu Yu, Li Yan. Using conductive atomic force microscope on carbon nanotube networks. Acta Physica Sinica, 2009, 58(12): 8473-8477. doi: 10.7498/aps.58.8473
  • Citation:
Metrics
  • Abstract views:  1306
  • PDF Downloads:  481
  • Cited By: 0
Publishing process
  • Received Date:  04 July 2014
  • Accepted Date:  26 August 2014
  • Published Online:  05 January 2015

Study on surface relief related to reverse martensitic transformation in Mn-based high-temperature antiferromagnetic shape memory alloy

  • 1. School of Materials Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, China
Fund Project:  Project supported by National Natural Science Foundation of China (Grant No. 51171112), the National Key Basic Research Program (Grant No. 2012CB619400), and the National Training Programs of Innovation and Entrepreneurship for Undergraduates, China (Grant No. 201310248037).

Abstract: Evolution of surface relief and its intrinsic mechanism associated with martensitic transformation (MT) during heating and cooling in Mn79.5Fe15.6Cu4.9 high-temperature antiferromagnetic shape memory alloy (SMA) have been investigated in nano-scale by means of in-situ atomic force microscopy (AFM), X-ray diffraction (XRD), and dynamic mechanical analyzer (DMA). Experimental results show that the N-type surface relief originates from the reverse MT and is completely made of matrix which is different from the conventional ones. The reverse MT exhibits untwinning shear and the reverse shearing of twinned martensites mainly contribute to the surface relief. The measured surface relief angles are less than 1°, which are determined by the small difference of lattice constants between fcc and fct structures. Surface relief has a good recovery property because of the crystallographic reversibility rule in SMAs, implying that this kind of alloy has a good surface morphology memory effect.

Reference (28)

Catalog

    /

    返回文章
    返回