Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study on extending the depth of field in reconstructed image for a micro digital hologram

Yang Jing Wu Xue-Cheng Wu Ying-Chun Yao Long-Chao Chen Ling-Hong Qiu Kun-Zan Cen Ke-Fa

Study on extending the depth of field in reconstructed image for a micro digital hologram

Yang Jing, Wu Xue-Cheng, Wu Ying-Chun, Yao Long-Chao, Chen Ling-Hong, Qiu Kun-Zan, Cen Ke-Fa
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Digital micro holography offers an in-situ, non-contact and three-dimensional way to explore the microscopic world. However, as it is difficult to focalize the whole object in one single reconstructed image, the application of digital micro holography to cases with a large longitudinal object volume is limited by the microscopes depth of field. By extending the depth of field in reconstructed micro holograms in the wavelet domain, this paper fully takes advantage of numerical reconstruction algorithms to solve this problem. First, a recorded hologram is rebuilt using the wavelet transform approach by setting up an appropriate longitudinal interval to obtain a series of reconstructed hologram planes. Then each plane is decomposed with wavelet into its sub-images of both high and low frequencies. Furthermore, the local variance of the maximum intensity gradients of the high- and low-frequency coefficients is calculated and utilized as the focus criterion. Finally, the image planes are fused into a single one with the depth of field extended to a large extent. The feasibility and robustness of this reconstruction procedure for both continuum and particle fields are investigated. One of the demonstrations is made in an experiment of a tilted continuum:carbon fiber. It is different from most of the previous applications where the interrogated is the particles and where the area involved is parallel to the CCD. The carbon fiber gets successfully reconstructed in three dimensions, and the measurement errors of its diameter are presented together with the reconstruction distances. Another is an experiment of a dispersed particle field:micro transparent particles are generated by an ultrasonic atomizer, for which the reconstruction procedure achieves an extended depth of field. In addition, a numerical model based on generalized Lorenz-Mie theory is used to simulate the holograms of both opaque and transparent particles of 1-15 m in diameter. Variations of the longitudinal location errors with the Fraunhofer number are analyzed, and comparisons are made between the results of opaque and transparent particles. Both the experimental and simulation outcomes show that this reconstruction procedure is a reliable one to acquire an extended-depth-of-field hologram for both the continuum and the dispersed particle fields, and then to accurately measure the objects.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51176162), and the Key Program of the National Natural Science Foundation of China (Grant No. 51390491).
    [1]

    Matrecano M, Paturzo M, Ferraro P 2014 Opt. Eng. 53 112317

    [2]

    Bergoënd I, Colomb T, Pavillon N, Emery Y, Depeursinge C 2009 Conference on Modeling Aspects in Optical Metrology II Munich, Germany, June 15-16, 2009 p73901C

    [3]

    Zhang Y Z, Wang D Y, Wang Y X, Tao S Q 2011 Chin. Phys. Lett. 28 114209

    [4]

    Matrecano M, Paturzo M, Finizio A, Ferraro P 2013 Opt. Lett. 38 896

    [5]

    Wang J, Zhao J L, Di J L, Rauf A, Yang W Z, Wang X L 2014 J. Appl. Phys. 115 173106

    [6]

    Leseberg D, Frère C 1988 Appl. Opt. 27 3020

    [7]

    De Nicola S, Finizio A, Pierattini G, Ferraro P, Alfieri D 2005 Opt. Exp. 13 9935

    [8]

    Gao X, Li C, Fang G Y 2014 Chin. Phys. B 23 028401

    [9]

    Xie H M, Wang Q H, Kishimoto S, Dai F L 2007 J. Appl. Phys. 101 103511

    [10]

    Wang J G, Bu J, Wang M W, Yang Y, Yuan X C 2012 Opt. Lett. 37 4534

    [11]

    Wu Y L, Yang Y, Zhai H C, Ma Z H, Ge Q, Deng L J 2013 Acta Phys. Sin. 62 084203 (in Chinese) [吴永丽, 杨勇, 翟宏琛, 马忠洪, 盖琦, 邓丽军 2013 物理学报 62 084203]

    [12]

    Chen L P, Lue X X 2009 Chin. Phys. B 18 189

    [13]

    Wu X C, Wu Y C, Zhou B W, Wang Z H, Gao X, Grehan G, Cen K F 2013 Appl. Opt. 52 5065

    [14]

    Hua L L, Xu N, Yang G 2014 Chin. Phys. B 23 064201

    [15]

    Shen G X, Wei R J 2005 Opt. Laser. Eng. 43 1039

    [16]

    Lu Q N, Chen Y L, Yuan R, Ge B Z, Gao Y, Zhang Y M 2009 Appl. Opt. 48 7000

    [17]

    Ferraro P, Grilli S, Alfieri D, De Nicola S, Finizio A, Pierattini G, Javidi B, Coppola G, Striano V 2005 Opt. Exp. 13 6738

    [18]

    Yu L F, Cai L L 2001 J. Opt. Soc. Am. A 18 1033

    [19]

    Ma L H, Wang H, Li Y, Jin H Z 2004 J. Opt. A 6 396

    [20]

    Wu Y C, Wu X C, Yang J, Wang Z H, Gao X, Zhou B W, Chen L H, Qiu K Z, Grehan G, Cen K F 2014 Appl. Opt. 53 556

    [21]

    Chen W, Quan C, Tay C J 2009 Appl. Phys. Lett. 95 201103

    [22]

    Wu Y C, Wu X C, Wang Z H, Grehan G, Chen L H, Cen K F 2011 Appl. Opt. 50 H297

    [23]

    Wu X C, Grehan G, Meunier-Guttin-Cluzel S, Chen L H, Cen K F 2009 Opt. Lett. 34 857

    [24]

    Sheng J, Malkiel E, Katz J 2006 Appl. Opt. 45 3893

    [25]

    Wang H Y, Zhang Z H, Liao W, Song X F, Guo Z J, Liu F F 2012 Acta Phys. Sin. 61 044208 (in Chinese) [王华英, 张志会, 廖薇, 宋修法, 郭中甲, 刘飞飞 2012 物理学报 61 044208]

    [26]

    Meinhart C D, Wereley S T, Gray M H B 2000 Meas. Sci. Technol. 11 809

    [27]

    Li J C 2012 Acta Phys. Sin. 61 134203 (in Chinese) [李俊昌 2012 物理学报 61 134203]

    [28]

    Wu X C, Pu X G, Pu S L, Yuan Z F, Cen K F 2009 J. Chem. Ind. Eng. 60 310 (in Chinese) [吴学成, 浦兴国, 浦世亮, 袁镇福, 岑可法 2009 化工学报 60 310]

    [29]

    Malek M, Coëtmellec S, Allano D, Lebrun D 2003 Opt. Commun. 223 263

    [30]

    Wu Y, Wu X, Saengkaew S, Meunier-Guttin-Cluzel S, Chen L, Qiu K, Gao X, Grehan G, Cen K F 2013 Opt. Commun. 305 247

    [31]

    Xu F, Ren K F, Cai X S 2006 Appl. Opt. 45 4990

  • [1]

    Matrecano M, Paturzo M, Ferraro P 2014 Opt. Eng. 53 112317

    [2]

    Bergoënd I, Colomb T, Pavillon N, Emery Y, Depeursinge C 2009 Conference on Modeling Aspects in Optical Metrology II Munich, Germany, June 15-16, 2009 p73901C

    [3]

    Zhang Y Z, Wang D Y, Wang Y X, Tao S Q 2011 Chin. Phys. Lett. 28 114209

    [4]

    Matrecano M, Paturzo M, Finizio A, Ferraro P 2013 Opt. Lett. 38 896

    [5]

    Wang J, Zhao J L, Di J L, Rauf A, Yang W Z, Wang X L 2014 J. Appl. Phys. 115 173106

    [6]

    Leseberg D, Frère C 1988 Appl. Opt. 27 3020

    [7]

    De Nicola S, Finizio A, Pierattini G, Ferraro P, Alfieri D 2005 Opt. Exp. 13 9935

    [8]

    Gao X, Li C, Fang G Y 2014 Chin. Phys. B 23 028401

    [9]

    Xie H M, Wang Q H, Kishimoto S, Dai F L 2007 J. Appl. Phys. 101 103511

    [10]

    Wang J G, Bu J, Wang M W, Yang Y, Yuan X C 2012 Opt. Lett. 37 4534

    [11]

    Wu Y L, Yang Y, Zhai H C, Ma Z H, Ge Q, Deng L J 2013 Acta Phys. Sin. 62 084203 (in Chinese) [吴永丽, 杨勇, 翟宏琛, 马忠洪, 盖琦, 邓丽军 2013 物理学报 62 084203]

    [12]

    Chen L P, Lue X X 2009 Chin. Phys. B 18 189

    [13]

    Wu X C, Wu Y C, Zhou B W, Wang Z H, Gao X, Grehan G, Cen K F 2013 Appl. Opt. 52 5065

    [14]

    Hua L L, Xu N, Yang G 2014 Chin. Phys. B 23 064201

    [15]

    Shen G X, Wei R J 2005 Opt. Laser. Eng. 43 1039

    [16]

    Lu Q N, Chen Y L, Yuan R, Ge B Z, Gao Y, Zhang Y M 2009 Appl. Opt. 48 7000

    [17]

    Ferraro P, Grilli S, Alfieri D, De Nicola S, Finizio A, Pierattini G, Javidi B, Coppola G, Striano V 2005 Opt. Exp. 13 6738

    [18]

    Yu L F, Cai L L 2001 J. Opt. Soc. Am. A 18 1033

    [19]

    Ma L H, Wang H, Li Y, Jin H Z 2004 J. Opt. A 6 396

    [20]

    Wu Y C, Wu X C, Yang J, Wang Z H, Gao X, Zhou B W, Chen L H, Qiu K Z, Grehan G, Cen K F 2014 Appl. Opt. 53 556

    [21]

    Chen W, Quan C, Tay C J 2009 Appl. Phys. Lett. 95 201103

    [22]

    Wu Y C, Wu X C, Wang Z H, Grehan G, Chen L H, Cen K F 2011 Appl. Opt. 50 H297

    [23]

    Wu X C, Grehan G, Meunier-Guttin-Cluzel S, Chen L H, Cen K F 2009 Opt. Lett. 34 857

    [24]

    Sheng J, Malkiel E, Katz J 2006 Appl. Opt. 45 3893

    [25]

    Wang H Y, Zhang Z H, Liao W, Song X F, Guo Z J, Liu F F 2012 Acta Phys. Sin. 61 044208 (in Chinese) [王华英, 张志会, 廖薇, 宋修法, 郭中甲, 刘飞飞 2012 物理学报 61 044208]

    [26]

    Meinhart C D, Wereley S T, Gray M H B 2000 Meas. Sci. Technol. 11 809

    [27]

    Li J C 2012 Acta Phys. Sin. 61 134203 (in Chinese) [李俊昌 2012 物理学报 61 134203]

    [28]

    Wu X C, Pu X G, Pu S L, Yuan Z F, Cen K F 2009 J. Chem. Ind. Eng. 60 310 (in Chinese) [吴学成, 浦兴国, 浦世亮, 袁镇福, 岑可法 2009 化工学报 60 310]

    [29]

    Malek M, Coëtmellec S, Allano D, Lebrun D 2003 Opt. Commun. 223 263

    [30]

    Wu Y, Wu X, Saengkaew S, Meunier-Guttin-Cluzel S, Chen L, Qiu K, Gao X, Grehan G, Cen K F 2013 Opt. Commun. 305 247

    [31]

    Xu F, Ren K F, Cai X S 2006 Appl. Opt. 45 4990

  • [1] Zhou Bin-Wu, Wu Xue-Cheng, Wu Ying-Chun, Yang Jing, Gérard Gréhan, Cen Ke-Fa. Influence of recording parameters on particle field measurement by digital holographic microscopy:a numerical investigation. Acta Physica Sinica, 2013, 62(20): 204203. doi: 10.7498/aps.62.204203
    [2] Li Jun-Chang. Focal depth research of digital holographic reconstructed image. Acta Physica Sinica, 2012, 61(13): 134203. doi: 10.7498/aps.61.134203
    [3] Zhou Wen-Jing, Hu Wen-Tao, Guo Lu, Xu Qiang-Sheng, Yu Ying-Jie. Experimental study of digital holographic tomography by a few projections. Acta Physica Sinica, 2010, 59(12): 8499-8511. doi: 10.7498/aps.59.8499
    [4] Li Jun-Chang, Fan Ze-Bin. Algorithm of the non-interpolation wave-front reconstruction of the color digital holography. Acta Physica Sinica, 2010, 59(4): 2457-2461. doi: 10.7498/aps.59.2457
    [5] Fan Feng, Li Jun-Xiang, Song Xiu-Fa, Zu Qiao-Fen, Wang Hua-Ying. High accuracy phase reconstruction of digital hologram by Hilbert transform. Acta Physica Sinica, 2014, 63(19): 194207. doi: 10.7498/aps.63.194207
    [6] Shi Bing-Chuan, Zhu Zhu-Qing, Wang Xiao-Lei, Xi Si-Xing, Gong Li-Ping. Analysis and improvement of reconstruction phase error in the image plane digital holography. Acta Physica Sinica, 2014, 63(24): 244201. doi: 10.7498/aps.63.244201
    [7] Li Si-Wei, Wu Jing-Jing, Zhang Sai-Wen, Li Heng, Chen Dan-Ni, Yu Bin, Qu Jun-Le. Design and numerical simulation demonstration of multi-functional holographic phase plate for large depth of field single molecular localization microscopy. Acta Physica Sinica, 2018, 67(17): 174202. doi: 10.7498/aps.67.20180569
    [8] Wang Hua-Ying, Liu Fei-Fei, Liao Wei, Song Xiu-Fa, Yu Meng-Jie, Liu Zuo-Qiang. Optimized digital micro-holographic imaging system. Acta Physica Sinica, 2013, 62(5): 054208. doi: 10.7498/aps.62.054208
    [9] Xu Wei, Li Jun-Chang, Zhang Ya-Ping. High quality digital holographic wave-front reconstruction system. Acta Physica Sinica, 2009, 58(8): 5385-5391. doi: 10.7498/aps.58.5385
    [10] Peng Zu-Jie, Li Jun-Chang, Tankam Patrice, Picart Pascal. An optical system of scattered light digital color holography and its wave front reconstruction algorithm. Acta Physica Sinica, 2010, 59(7): 4646-4655. doi: 10.7498/aps.59.4646
    [11] Xu Xian-Feng, Han Li-Li, Yuan Hong-Guang. Analysis and correction of object wavefront reconstruction errorsin two-step phase-shifting interferometry. Acta Physica Sinica, 2011, 60(8): 084206. doi: 10.7498/aps.60.084206
    [12] Wang Hua-Ying, Yu Meng-Jie, Liu Fei-Fei, Jiang Ya-Nan, Song Xiu-Fa, Gao Ya-Fei. Generalized linear reconstructing algorithm based on homomorphic signal processed in digital holographic microscopy. Acta Physica Sinica, 2013, 62(23): 234207. doi: 10.7498/aps.62.234207
    [13] Li Fang, Wang Ming-Qing, Zheng Ming, Lu Wei, Yu Qing-Nan, Jia Yan, Wu Jian. Numerical reference plane algorithm for effectively solving tilt distortion of a phase image in digital off-axis holography. Acta Physica Sinica, 2018, 67(9): 094202. doi: 10.7498/aps.67.20172528
    [14] Wang Hua-Ying, Zhang Zhi-Hui, Liao Wei, Song Xiu-Fa, Guo Zhong-Jia, Liu Fei-Fei. Focal depth of digital lensless Fourier transform micro-holographic system. Acta Physica Sinica, 2012, 61(4): 044208. doi: 10.7498/aps.61.044208
    [15] Yuan Fei, Yuan Cao-Jin, Nie Shou-Ping, Zhu Zhu-Qing, Ma Qing-Yu, Li Ying, Zhu Wen-Yan, Feng Shao-Tong. Digital holographic microscope employing dual-Lloyd’s mirror. Acta Physica Sinica, 2014, 63(10): 104207. doi: 10.7498/aps.63.104207
    [16] Zhao Ying-Chun, Zhang Xiu-Ying, Yuan Cao-Jin, Nie Shou-Ping, Zhu Zhu-Qing, Wang Lin, Li Yang, Gong Li-Ping, Feng Shao-Tong. Dark-field digital holographic microscopy by using vortex beam illumination. Acta Physica Sinica, 2014, 63(22): 224202. doi: 10.7498/aps.63.224202
    [17] Zhang Yi-Yi, Wu Jia-Chen, Hao Ran, Jin Shang-Zhong, Cao Liang-Cai. Digital holographic microscopy for red blood cell imaging. Acta Physica Sinica, 2020, 69(16): 164201. doi: 10.7498/aps.69.20200357
    [18] Luo Lai-Long. Tunnel current in carbon fiber reinforced concrete. Acta Physica Sinica, 2005, 54(6): 2540-2544. doi: 10.7498/aps.54.2540
    [19] Wang Hua-Ying, Liu Fei-Fei, Song Xiu-Fa, Liao Wei, Zhao Bao-Qun, Yu Meng-Jie, Liu Zuo-Qiang. High-quality digital image-plane micro-holographic system with the same wavefront curvature of reference and object wave. Acta Physica Sinica, 2013, 62(2): 024207. doi: 10.7498/aps.62.024207
    [20] Wu Yong-Li, Yang Yong, Zhai Hong-Chen, Ma Zhong-Hong, Gai Qi, Deng Li-Jun. Colligated multiplexing approach to expanding the field of view in the recording process of digital holographic microscopy. Acta Physica Sinica, 2013, 62(8): 084203. doi: 10.7498/aps.62.084203
  • Citation:
Metrics
  • Abstract views:  1233
  • PDF Downloads:  344
  • Cited By: 0
Publishing process
  • Received Date:  24 September 2014
  • Accepted Date:  12 December 2014
  • Published Online:  05 June 2015

Study on extending the depth of field in reconstructed image for a micro digital hologram

  • 1. State Key Laboratory of Clean Energy Utilization, School of Energy Engineering, Zhejiang University, Hangzhou 310027, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 51176162), and the Key Program of the National Natural Science Foundation of China (Grant No. 51390491).

Abstract: Digital micro holography offers an in-situ, non-contact and three-dimensional way to explore the microscopic world. However, as it is difficult to focalize the whole object in one single reconstructed image, the application of digital micro holography to cases with a large longitudinal object volume is limited by the microscopes depth of field. By extending the depth of field in reconstructed micro holograms in the wavelet domain, this paper fully takes advantage of numerical reconstruction algorithms to solve this problem. First, a recorded hologram is rebuilt using the wavelet transform approach by setting up an appropriate longitudinal interval to obtain a series of reconstructed hologram planes. Then each plane is decomposed with wavelet into its sub-images of both high and low frequencies. Furthermore, the local variance of the maximum intensity gradients of the high- and low-frequency coefficients is calculated and utilized as the focus criterion. Finally, the image planes are fused into a single one with the depth of field extended to a large extent. The feasibility and robustness of this reconstruction procedure for both continuum and particle fields are investigated. One of the demonstrations is made in an experiment of a tilted continuum:carbon fiber. It is different from most of the previous applications where the interrogated is the particles and where the area involved is parallel to the CCD. The carbon fiber gets successfully reconstructed in three dimensions, and the measurement errors of its diameter are presented together with the reconstruction distances. Another is an experiment of a dispersed particle field:micro transparent particles are generated by an ultrasonic atomizer, for which the reconstruction procedure achieves an extended depth of field. In addition, a numerical model based on generalized Lorenz-Mie theory is used to simulate the holograms of both opaque and transparent particles of 1-15 m in diameter. Variations of the longitudinal location errors with the Fraunhofer number are analyzed, and comparisons are made between the results of opaque and transparent particles. Both the experimental and simulation outcomes show that this reconstruction procedure is a reliable one to acquire an extended-depth-of-field hologram for both the continuum and the dispersed particle fields, and then to accurately measure the objects.

Reference (31)

Catalog

    /

    返回文章
    返回