Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Doping and Raman scattering of strong spin-orbit-coupling compound Sr2-xLaxIrO4

Liu Sheng-Li Li Jian-Zheng Cheng Jie Wang Hai-Yun Li Yong-Tao Zhang Hong-Guang Li Xing-Ao

Doping and Raman scattering of strong spin-orbit-coupling compound Sr2-xLaxIrO4

Liu Sheng-Li, Li Jian-Zheng, Cheng Jie, Wang Hai-Yun, Li Yong-Tao, Zhang Hong-Guang, Li Xing-Ao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Novel unconventional physical phenomena, such as metal-insulator transition, high temperature superconductivity, colossal magneto-resistance and quantum criticality, are usually found in transition metal oxides (TMOs) with layered perovskite structures. Great success has been achieved in 3d TMOs, in which the localized 3d states yield strongly correlated narrow bands with a large on-site Coulomb repulsion U and a small band width W. Anomalous insulating behaviors are reported in the 5d TMOs, such as Sr2IrO4 system, which is surprising since the 5d TMOs are usually considered as weakly correlated wide band systems with largely reduced on-site Coulomb repulsion U due to delocalized 5d states. The crystal structure of Sr2IrO4 consists of two-dimensional (2D) IrO2 layers, similar to the parent compound La2CuO4 of the cuprates. Theoretically, a variational Monte Carlo study of Sr2IrO4 suggests that d-wave like superconductivity may appear but only within a narrow region of electron doping. In contrast, an s±*-wave phase is established for hole doping deduced from functional renormalization group, and triggered by spin fluctuations within and across the two conduction bands. Moreover, triplet p-wave pairing state with relatively high transition temperature emerges on the hole-doped side when the Hund's coupling is comparable to spin-orbit coupling. Several experiments are tried to search for the predicted unconventional superconductivity due to both electron-and hole-doping. However, to the best of our knowledge, it has not been found yet in the carrier-doped Sr2IrO4 system. Hence, more detailed studies are needed to explore the potential superconductivity.#br#A series of La doped Sr2-xLaxIrO4 samples is synthesized based on solid state reaction method. The evolution of the crystal structure is studied by the X-ray diffraction, scanning electron microscopy, together with the Raman spectrum. It is found that the crystal constant of the c-axis decreases with increasing doping level as well as the apical Ir—O1 bond length, indicating the lattice construction. Moreover, the distortion of the IrO6 octahedron reduces with increasing doping level. Therefore, blue shift occurs of the Raman scattering peaks. The temperature dependence of the Raman spectrum is also studied. It is found that the frequencies of the A1g and B1g vibration modes increase with temperature decreasing and an abnormal jump occurs around 110 K, which is believed to be correlated with the structural change and the magnetic transition around this temperature.
    • Funds: Project supported by the Natural Science Foundation for Colleges and Universities in Jiangsu Province, China (Grant No. 13KJB140012), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20130376, BK20130855), the National Natural Science Foundation of China (Grant Nos. 51172110, 11405089), the Nanotechnology Foundation of Suzhou Bureau of Science and Technology, China (Grant No. ZXG201444), and the “Six Talent Peaks Project” in Jiangsu Province, China (Grant No. 2014-XCL-015).
    [1]

    Imada M, Fujimori A, Tokura Y 1998 Rev. Mod. Phys. 70 1039

    [2]

    Crawford M K, Subramanian M A, Harlow R L, Fernandez-Baca J A, Wang Z R, Johnston D C 1994 Phys. Rev. B 49 9198

    [3]

    Yang J J, Choi Y J, Oh Y S, Hogan A, Horibe Y, Kim K, Min B I, Cheong S W 2012 Phys. Rev. Lett. 108 116402

    [4]

    Li L, Qi T F, Lin L S, Wu X X, Zhang X T, Butrouna K, Cao V S, Zhang Y H, Hu J P, Schlottmann P, Delong L E, Cao G 2013 arXiv:1301.4135

    [5]

    Singh D J, Blaha P, Schwarz K, Sofo J O 2002 Phys. Rev. B 65 155109

    [6]

    Kim B J, Jin H, Moon S J, Kim J Y, Park B G, Leem C S, Yu J, Noh T W, Kim C, Oh S J, Park J H, Durairaj V, Cao G, Rotenberg E 2008 Phys. Rev. Lett. 101 076402

    [7]

    Kim B J, Ohsumi H, Komesu T, Sakai S, Morita T, Takagi H, Arima T 2009 Science 323 1329

    [8]

    Wang F, Senthil T 2011 Phys. Rev. Lett. 106 136402

    [9]

    Watanabe H, Shirakawa T, Yunoki S 2013 Phys. Rev. Lett. 110 027002

    [10]

    Zhou Y, Lee P A, Ng T K, Zhang F C 2008 Phys. Rev. Lett. 101 197201

    [11]

    Fu L, Berg E 2010 Phys. Rev. Lett. 105 097001

    [12]

    Meng Z Y, Kim Y B, Kee H Y 2014 Phys. Rev. Lett. 113 177003

    [13]

    Yang Y, Wang W S, Liu J G, Chen H, Dai J H, Wang Q H 2014 Phys. Rev. B 89 094518

    [14]

    Klein Y, Terasaki I 2008 J. Phys.: Condens. Matter 20 295201

    [15]

    Cosio-Castaneda C, Tavizon G, Baeza A, de la Mora P, Escudero R 2007 J. Phys.: Condens. Matter 19 446210

    [16]

    Ge M, Qi T F, Korneta O B, de Long D E, Schlottmann P, Crummett W P, Cao G 2011 Phys. Rev. B 84 100402(R)

    [17]

    Dong S T, Zhang B B, Zhang L Y, Chen Y B, Zhou J, Zhang S T, Gu Z B, Yao S H, Chen Y F 2014 Phys. Lett. A 378 2777

    [18]

    Lee J S, Krockenberger Y, Takahashi K S, Kawasaki M, Tokura Y 2012 Phys. Rev. B 85 035101

    [19]

    Qi T F, Korneta O B, Li L, Butrouna K, Cao V S, Wan X G, Schlottmann P, Kaul R K, Cao G 2012 Phys. Rev. B 86 125105

    [20]

    Korneta O B, Qi T F, Chikara S, Parkin S, de Long L E, Schlottmann P, Cao G 2010 Phys. Rev. B 82 15117

    [21]

    Gatimu A J, Berthelot R, Muir S, Sleight A W, Subramanian M A 2012 J. Solid State Chem. 190 257

    [22]

    Ravichandran J, Serrao C R, Efetov D K, Yi D, Ramesh R, Kim P 2013 arxiv:1312.7015

    [23]

    Li J Z, Liu S L, Wang H Y, Li G, Chi Q Z, Su D D, Li Y T, Zhang H G, Cheng J, Li X A 2014 Mater. Rev. 28 40 (in Chinese) [厉建峥, 刘胜利, 王海云, 李根, 池庆贞, 苏丹丹, 李永涛, 张红光, 程杰, 李兴鳌 2014 材料导报 28 40]

    [24]

    Huang Q, Soubeyroux J L, Chmaissem O, Natali Sora I, Santoro A, Cava R J, Krajewski J J, Jr Peck W F 1994 J. Solid State Chem. 112 355

    [25]

    Cetin M F, Lemmens P, Gnezdilov V, Wulferding D, Menzel D, Takayama T, Ohashi K, Takagi H 2012 Phys. Rev. B 85 195148

    [26]

    Bhatti I N, Rawat R, Banerjee A, Pramanik A K 2014 J. Phys.: Condens. Matter 27 016005

    [27]

    Glamazda A, Lee W J, Choi K Y, Lemmens P, Choi H Y, Lee N, Choi Y J 2014 Phys. Rev. B 89 104406

  • [1]

    Imada M, Fujimori A, Tokura Y 1998 Rev. Mod. Phys. 70 1039

    [2]

    Crawford M K, Subramanian M A, Harlow R L, Fernandez-Baca J A, Wang Z R, Johnston D C 1994 Phys. Rev. B 49 9198

    [3]

    Yang J J, Choi Y J, Oh Y S, Hogan A, Horibe Y, Kim K, Min B I, Cheong S W 2012 Phys. Rev. Lett. 108 116402

    [4]

    Li L, Qi T F, Lin L S, Wu X X, Zhang X T, Butrouna K, Cao V S, Zhang Y H, Hu J P, Schlottmann P, Delong L E, Cao G 2013 arXiv:1301.4135

    [5]

    Singh D J, Blaha P, Schwarz K, Sofo J O 2002 Phys. Rev. B 65 155109

    [6]

    Kim B J, Jin H, Moon S J, Kim J Y, Park B G, Leem C S, Yu J, Noh T W, Kim C, Oh S J, Park J H, Durairaj V, Cao G, Rotenberg E 2008 Phys. Rev. Lett. 101 076402

    [7]

    Kim B J, Ohsumi H, Komesu T, Sakai S, Morita T, Takagi H, Arima T 2009 Science 323 1329

    [8]

    Wang F, Senthil T 2011 Phys. Rev. Lett. 106 136402

    [9]

    Watanabe H, Shirakawa T, Yunoki S 2013 Phys. Rev. Lett. 110 027002

    [10]

    Zhou Y, Lee P A, Ng T K, Zhang F C 2008 Phys. Rev. Lett. 101 197201

    [11]

    Fu L, Berg E 2010 Phys. Rev. Lett. 105 097001

    [12]

    Meng Z Y, Kim Y B, Kee H Y 2014 Phys. Rev. Lett. 113 177003

    [13]

    Yang Y, Wang W S, Liu J G, Chen H, Dai J H, Wang Q H 2014 Phys. Rev. B 89 094518

    [14]

    Klein Y, Terasaki I 2008 J. Phys.: Condens. Matter 20 295201

    [15]

    Cosio-Castaneda C, Tavizon G, Baeza A, de la Mora P, Escudero R 2007 J. Phys.: Condens. Matter 19 446210

    [16]

    Ge M, Qi T F, Korneta O B, de Long D E, Schlottmann P, Crummett W P, Cao G 2011 Phys. Rev. B 84 100402(R)

    [17]

    Dong S T, Zhang B B, Zhang L Y, Chen Y B, Zhou J, Zhang S T, Gu Z B, Yao S H, Chen Y F 2014 Phys. Lett. A 378 2777

    [18]

    Lee J S, Krockenberger Y, Takahashi K S, Kawasaki M, Tokura Y 2012 Phys. Rev. B 85 035101

    [19]

    Qi T F, Korneta O B, Li L, Butrouna K, Cao V S, Wan X G, Schlottmann P, Kaul R K, Cao G 2012 Phys. Rev. B 86 125105

    [20]

    Korneta O B, Qi T F, Chikara S, Parkin S, de Long L E, Schlottmann P, Cao G 2010 Phys. Rev. B 82 15117

    [21]

    Gatimu A J, Berthelot R, Muir S, Sleight A W, Subramanian M A 2012 J. Solid State Chem. 190 257

    [22]

    Ravichandran J, Serrao C R, Efetov D K, Yi D, Ramesh R, Kim P 2013 arxiv:1312.7015

    [23]

    Li J Z, Liu S L, Wang H Y, Li G, Chi Q Z, Su D D, Li Y T, Zhang H G, Cheng J, Li X A 2014 Mater. Rev. 28 40 (in Chinese) [厉建峥, 刘胜利, 王海云, 李根, 池庆贞, 苏丹丹, 李永涛, 张红光, 程杰, 李兴鳌 2014 材料导报 28 40]

    [24]

    Huang Q, Soubeyroux J L, Chmaissem O, Natali Sora I, Santoro A, Cava R J, Krajewski J J, Jr Peck W F 1994 J. Solid State Chem. 112 355

    [25]

    Cetin M F, Lemmens P, Gnezdilov V, Wulferding D, Menzel D, Takayama T, Ohashi K, Takagi H 2012 Phys. Rev. B 85 195148

    [26]

    Bhatti I N, Rawat R, Banerjee A, Pramanik A K 2014 J. Phys.: Condens. Matter 27 016005

    [27]

    Glamazda A, Lee W J, Choi K Y, Lemmens P, Choi H Y, Lee N, Choi Y J 2014 Phys. Rev. B 89 104406

  • [1] Yu Zhi-Qiang, Xie Quan, Xiao Qing-Quan. Effects of the spin-orbit coupling on X-ray spectrum in special relativity. Acta Physica Sinica, 2010, 59(2): 925-931. doi: 10.7498/aps.59.925
    [2] Chen Guang-Ping. Ground state of a rotating spin-orbit-coupled Bose-Einstein condensate in a harmonic plus quartic potential. Acta Physica Sinica, 2015, 64(3): 030302. doi: 10.7498/aps.64.030302
    [3] Dong Quan-Li, Zhang Jie, Yang Jie, Jiang Zhao-Tan. Electronic energy band structures of carbon nanotubeswith spin-orbit coupling interaction. Acta Physica Sinica, 2011, 60(7): 075202. doi: 10.7498/aps.60.075202
    [4] Zhou Wen-Ping, Wan Song-Ming, Zhang Xia, Zhang Qing-Li, Sun Dun-Lu, Qiu Huai-Li, You Jing-Lin, Yin Shao-Tang. Study of growth units and the growth habit of PbMoO4 crystal using high temperature Raman spectra. Acta Physica Sinica, 2008, 57(11): 7305-7309. doi: 10.7498/aps.57.7305
    [5] Sun Dun-Lu, Qiu Huai-Li, Hang Yin, Zhang Lian-Han, Zhu Shi-Ning, Wang Ai-Hua, Yin Shao-Tang. Study on laser-micro-Raman spectra in near-stoichiometric LiNbO3 crystals. Acta Physica Sinica, 2004, 53(7): 2270-2274. doi: 10.7498/aps.53.2270
    [6] Ding Pei, Liang Er-Jun, Zhang Hong-Rui, Liu Yi-Zhen, Liu Hui, Guo Xin-Yong, Du Zu-Liang. Growth mechanism and Raman spectroscopic study of “interlinked-cone" shaped CNx nanotubes. Acta Physica Sinica, 2003, 52(1): 237-241. doi: 10.7498/aps.52.237
    [7] Wang Li-Hong, You Jing-Lin, Wang Yuan-Yuan, Zheng Shao-Bo, Simon Patrick, Hou Min, Ji Zi-Fang. Temperature dependent Raman spectra and micro-structure study of hexagonal MgTiO3 crystal. Acta Physica Sinica, 2011, 60(10): 104209. doi: 10.7498/aps.60.104209
    [8] Zhou Hai-Liang, Gu Qing-Tian, Zhang Qing-Hua, Liu Bao-An, Zhu Li-Li, Zhang Li-Song, Zhang Fang, Xu Xin-Guang, Wang Zheng-Ping, Sun Xun, Zhao Xian. Raman spectroscopic study on the micro-structure of NH4H2PO4 and ND4D2PO4 crystals. Acta Physica Sinica, 2015, 64(19): 197801. doi: 10.7498/aps.64.197801
    [9] Meng Zeng-Ming, Huang Liang-Hui, Peng Peng, Chen Liang-Chao, Fan Hao, Wang Peng-Jun, Zhang Jing. Raman coupling in atomic Bose-Einstein condensed with phase-locked laser system. Acta Physica Sinica, 2015, 64(24): 243202. doi: 10.7498/aps.64.243202
    [10] Yan Cheng-Feng, Zhao Guang-Jun, Hang Yin, Zhang Lian-Han, Xu Jun. Crystal structure and optical characterization of cerium-doped Lu2Si2O7. Acta Physica Sinica, 2005, 54(8): 3745-3748. doi: 10.7498/aps.54.3745
    [11] Ning Kai-Jie, Zhang Qing-Li, Zhou Peng-Yu, Yang Hua-Jun, Xu Lan, Sun Dun-Lu, Yin Shao-Tang. Structure and spectral properties of Yb3+:Gd2SiO5 crystal. Acta Physica Sinica, 2012, 61(12): 128102. doi: 10.7498/aps.61.128102
    [12] Zhang Li-Jie, Lei Ming, Wang Yu-Ming, Li Jian-Li, Sun Yu, Liu Jing-He. Growth, structure and spectral properties of Yb3+-doped KY(WO4)2 laser crystal. Acta Physica Sinica, 2006, 55(6): 3141-3146. doi: 10.7498/aps.55.3141
    [13] Yang Liu, Yin Chun-Hao, Jiao Yang, Zhang Lei, Song Ning, Ru Rui-Peng. Spectrum structure and g factor of electron paramagnetic resonance of LiCoO2 crystal doped with Ni. Acta Physica Sinica, 2006, 55(4): 1991-1996. doi: 10.7498/aps.55.1991
    [14] Liu Ming, Cao Shi-Xun, Yuan Shu-Juan, Kang Bao-Juan, Lu Bo, Zhang Jin-Cang. The study of Raman spectrum, distortion of lattice and spin reorientation phase transition on Pr doped DyFeO3 system. Acta Physica Sinica, 2013, 62(14): 147601. doi: 10.7498/aps.62.147601
    [15] Hu Ni, Xie Hui, Wang Li-Li, Lin Ying, Xiong Rui, Yu Zu-Xing, Tang Wu-Feng, Shi Jing. B-site Fe doping effect on the structure and electronic transport properties of quasi-one-dimensional spin ladder compound Sr14(Cu1-yFey)24O41. Acta Physica Sinica, 2006, 55(7): 3480-3487. doi: 10.7498/aps.55.3480
    [16] Wang Li-Li, Xiong Rui, Wei Wei, Hu Ni, Lin Ying, Zhu Ben-Peng, Tang Wu-Feng, Yu Zu-Xing, Tang Zheng, Shi Jing. Study on the magnetic susceptibility of quasi-one-dimensional spin ladder compounds (Sr1-xCax)14Cu24O41-δ with oxygen deficiency. Acta Physica Sinica, 2008, 57(7): 4334-4340. doi: 10.7498/aps.57.4334
    [17] Wang Ying-Wei, Wang Zi-Dong, Cheng Hao-Bo. Structure and spectrum of the novel laser crystal Yb:KY(WO4)2. Acta Physica Sinica, 2006, 55(9): 4803-4808. doi: 10.7498/aps.55.4803
    [18] Fu Pei-Zhen, Hou Bi-Hui, Wang Li, Zhong Ren-Bin, Wang Ya-Li, Zhang Er-Pan, Jian Yan-Zhen. Terahertz spectra and soft optical phonons of PbB4O7 crystal. Acta Physica Sinica, 2010, 59(7): 4640-4645. doi: 10.7498/aps.59.4640
    [19] Zhang Ji, Wang Di, Zhang De-Ming, Zhang Qing-Li, Wan Song-Ming, Sun Dun-Lu, Yin Shao-Tang. Vibrational spectra and first principles calculation of BaBPO5 crystal. Acta Physica Sinica, 2013, 62(3): 037802. doi: 10.7498/aps.62.037802
    [20] Gong Shi-Jing, Duan Chun-Gang. Recent progress in Rashba spin orbit coupling on metal surface. Acta Physica Sinica, 2015, 64(18): 187103. doi: 10.7498/aps.64.187103
  • Citation:
Metrics
  • Abstract views:  1108
  • PDF Downloads:  224
  • Cited By: 0
Publishing process
  • Received Date:  05 May 2015
  • Accepted Date:  16 June 2015
  • Published Online:  05 October 2015

Doping and Raman scattering of strong spin-orbit-coupling compound Sr2-xLaxIrO4

  • 1. Center of Advanced Functional Ceramics, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
  • 2. Nanjing University (Suzhou) High-Tech Institute, Suzhou 215123, China;
  • 3. College of Electronic Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
  • 4. College of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
Fund Project:  Project supported by the Natural Science Foundation for Colleges and Universities in Jiangsu Province, China (Grant No. 13KJB140012), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20130376, BK20130855), the National Natural Science Foundation of China (Grant Nos. 51172110, 11405089), the Nanotechnology Foundation of Suzhou Bureau of Science and Technology, China (Grant No. ZXG201444), and the “Six Talent Peaks Project” in Jiangsu Province, China (Grant No. 2014-XCL-015).

Abstract: Novel unconventional physical phenomena, such as metal-insulator transition, high temperature superconductivity, colossal magneto-resistance and quantum criticality, are usually found in transition metal oxides (TMOs) with layered perovskite structures. Great success has been achieved in 3d TMOs, in which the localized 3d states yield strongly correlated narrow bands with a large on-site Coulomb repulsion U and a small band width W. Anomalous insulating behaviors are reported in the 5d TMOs, such as Sr2IrO4 system, which is surprising since the 5d TMOs are usually considered as weakly correlated wide band systems with largely reduced on-site Coulomb repulsion U due to delocalized 5d states. The crystal structure of Sr2IrO4 consists of two-dimensional (2D) IrO2 layers, similar to the parent compound La2CuO4 of the cuprates. Theoretically, a variational Monte Carlo study of Sr2IrO4 suggests that d-wave like superconductivity may appear but only within a narrow region of electron doping. In contrast, an s±*-wave phase is established for hole doping deduced from functional renormalization group, and triggered by spin fluctuations within and across the two conduction bands. Moreover, triplet p-wave pairing state with relatively high transition temperature emerges on the hole-doped side when the Hund's coupling is comparable to spin-orbit coupling. Several experiments are tried to search for the predicted unconventional superconductivity due to both electron-and hole-doping. However, to the best of our knowledge, it has not been found yet in the carrier-doped Sr2IrO4 system. Hence, more detailed studies are needed to explore the potential superconductivity.#br#A series of La doped Sr2-xLaxIrO4 samples is synthesized based on solid state reaction method. The evolution of the crystal structure is studied by the X-ray diffraction, scanning electron microscopy, together with the Raman spectrum. It is found that the crystal constant of the c-axis decreases with increasing doping level as well as the apical Ir—O1 bond length, indicating the lattice construction. Moreover, the distortion of the IrO6 octahedron reduces with increasing doping level. Therefore, blue shift occurs of the Raman scattering peaks. The temperature dependence of the Raman spectrum is also studied. It is found that the frequencies of the A1g and B1g vibration modes increase with temperature decreasing and an abnormal jump occurs around 110 K, which is believed to be correlated with the structural change and the magnetic transition around this temperature.

Reference (27)

Catalog

    /

    返回文章
    返回