Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research on high sensitivity detection of carbon monoxide based on quantum cascade laser and quartz-enhanced photoacoustic spectroscopy

Ma Yu-Fei He Ying Yu Xin Yu Guang Zhang Jing-Bo Sun Rui

Research on high sensitivity detection of carbon monoxide based on quantum cascade laser and quartz-enhanced photoacoustic spectroscopy

Ma Yu-Fei, He Ying, Yu Xin, Yu Guang, Zhang Jing-Bo, Sun Rui
PDF
Get Citation
  • Quartz-enhanced photoacoustic spectroscopy (QEPAS) technology was invented lately. Therefore it is an innovative method for trace gas detection compared with other existing technologies. In this paper, trace gas detection for carbon monoxide (CO) based on QEPAS technology is demonstrated. In order to realize high sensitive detection, a novel mid-infrared, state-of-art 4.6 m high power, continuous wave (CW), distributed feedback (DFB) quantum cascade laser (QCL) with single mode output is used as the laser exciting source. Therefore, the strongest absorption of fundamental frequency band of CO is achieved. Using the wavelength modulation spectroscopy and the 2nd harmonic detection, the influence of laser wavelength modulation depth on QEPAS signal level is investigated. Two important parameters of Q-factor and resonant frequency for quartz tuning fork as a function of gas pressure are measured. After optimization of the modulation depth of laser wavelength, the gas pressure of CO:N2 gas mixture and the improving speed of the V-R relaxation rate through the addition of water vapor, a minimum detection limit (MDL) of 1.95 parts per billion by volume (ppbv) for CO at gas pressure of 500 Torr and modulation depth of 0.2 cm-1 is achieved with a 1 sec acquisition time and the addition of 2.6% water vapor in the analyzed gas mixture. Finally, the influence of level lifetime of the targeted gas on QEPAS signal amplitude is investigated by comparison of CO QEPAS sensor performance using two different CO absorption lines of R(5) and R(6) located at 2165.6 cm-1 and 2169.2 cm-1respectively. The expression of the QEPAS signal amplitude is modified by adding the level lifetime parameter for a better precision.
      Corresponding author: Ma Yu-Fei, mayufei@hit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61505041), the Natural Science Foundation of Heilongjiang Province of China (Grant No. F2015011), the Special Financial Grant from the China Postdoctoral Science Foundation (Grant No. 2015T80350), the General Financial Grant from the China Postdoctoral Science Foundation (Grant No. 2014M560262), the Postdoctoral Fund of Heilongjiang Province, China (Grant No. LBH-Z14074), the Special Financial Grant from the Heilongjiang Province Postdoctoral Foundation of China (Grant No. LBH-TZ0602), the Fundamental Research Funds for the Central Universities of China (Grant No. HIT. NSRIF. 2015044), and the National Key Scientific Instrument and Equipment Development Projects of China (Grant No. 2012YQ040164).
    [1]

    Bradshaw J L, Bruno J D, Lascola K M, Leavitt R P, Pham J T, Towner F J, Sonnenfroh D M, Parameswaran K R 2011 Proc. of SPIE 8032 80320D

    [2]

    Ren W, Farooq A, Davidson D F, Hanson R K 2012 Appl. Phys. B 107 849

    [3]

    Wagner S, Klein M, Kathrotia T, Riedel U, Kissel T, Dreizler A, Ebert V 2012 Appl Phys. B 109 533

    [4]

    Khalil M A K, Rasmussen R A 1984 Science 224 54

    [5]

    Logan J A, Prather M J, Wofsy S C, McElroy M B 1981 J. Geophys. Res. 86 7210

    [6]

    Kosterev A A, Bakhirkin Y A, Curl R F, Tittel F K 2002 Opt. Lett. 27 1902

    [7]

    Gong P, Xie L, Qi X Q, Wang R, Wang H, Chang M C, Yang H X, Sun F, Li G P 2015 Chin. Phys. B 24 014206

    [8]

    Dong L, Spagnolo V, Lewicki R, Tittel F K 2012 Opt. Express 19 24037

    [9]

    Liu K, Guo X Y, Yi H M, Chen W D, Zhang W J, Gao X M 2009 Opt. Lett. 34 1594

    [10]

    Liu K, Li J S, Wang L, Tan T, Zhang W J, Gao X M, Chen W D, Tittel F K 2009 Appl. Phys. B 94 527

    [11]

    Yin X K, Zheng H D, Dong L, Wu H P, Liu X L, Ma W G, Zhang L, Yin W B, Jia S T 2015 Acta Phys. Sin. 64 130701 (in Chinese) [尹旭坤, 郑华丹, 董磊, 武红鹏, 刘小利, 马维光, 张雷, 尹王保, 贾锁堂 2015 物理学报 64 130701]

    [12]

    Ma Y F, Yu X, Yu G, Li X D, Zhang J B, Chen D Y, Sun R 2015 Appl. Phys. Lett. 107 021106

    [13]

    Liu K, Guo X Y, Yi H M, Chen W D, Zhang W J, Gao X M 2009 Opt. Lett. 34 1594

    [14]

    Borri S, Patimisco P, Galli I, Mazzotti D, Giusfredi G, Akikusa N, Yamanishi M, Scamarcio G, de Natale P, Spagnolo V 2014 Appl. Phys. Lett. 104 091114

    [15]

    Faist J, Capasso F, Sivco D L, Sirtori C, Hutchinson A L, Cho A Y 1994 Science 264 553

    [16]

    Ma Y F, Yu G, Zhang J B, Yu X, Sun R, Tittel F K 2015 Sensors 15 7596

    [17]

    Dong L, Kosterev A A, Thomazy D, Tittel F K 2010 Appl. Phys. B 100 627

    [18]

    Kosterev A A, Tittel F K, Serebryakov D V, Malinovsky A L, Morozov I V 2005 Rev. Sci. Instrum. 76 043105

    [19]

    Ma Y F, Lewicki R, Razeghi M, Tittel F K 2013 Opt. Express 21 1008

  • [1]

    Bradshaw J L, Bruno J D, Lascola K M, Leavitt R P, Pham J T, Towner F J, Sonnenfroh D M, Parameswaran K R 2011 Proc. of SPIE 8032 80320D

    [2]

    Ren W, Farooq A, Davidson D F, Hanson R K 2012 Appl. Phys. B 107 849

    [3]

    Wagner S, Klein M, Kathrotia T, Riedel U, Kissel T, Dreizler A, Ebert V 2012 Appl Phys. B 109 533

    [4]

    Khalil M A K, Rasmussen R A 1984 Science 224 54

    [5]

    Logan J A, Prather M J, Wofsy S C, McElroy M B 1981 J. Geophys. Res. 86 7210

    [6]

    Kosterev A A, Bakhirkin Y A, Curl R F, Tittel F K 2002 Opt. Lett. 27 1902

    [7]

    Gong P, Xie L, Qi X Q, Wang R, Wang H, Chang M C, Yang H X, Sun F, Li G P 2015 Chin. Phys. B 24 014206

    [8]

    Dong L, Spagnolo V, Lewicki R, Tittel F K 2012 Opt. Express 19 24037

    [9]

    Liu K, Guo X Y, Yi H M, Chen W D, Zhang W J, Gao X M 2009 Opt. Lett. 34 1594

    [10]

    Liu K, Li J S, Wang L, Tan T, Zhang W J, Gao X M, Chen W D, Tittel F K 2009 Appl. Phys. B 94 527

    [11]

    Yin X K, Zheng H D, Dong L, Wu H P, Liu X L, Ma W G, Zhang L, Yin W B, Jia S T 2015 Acta Phys. Sin. 64 130701 (in Chinese) [尹旭坤, 郑华丹, 董磊, 武红鹏, 刘小利, 马维光, 张雷, 尹王保, 贾锁堂 2015 物理学报 64 130701]

    [12]

    Ma Y F, Yu X, Yu G, Li X D, Zhang J B, Chen D Y, Sun R 2015 Appl. Phys. Lett. 107 021106

    [13]

    Liu K, Guo X Y, Yi H M, Chen W D, Zhang W J, Gao X M 2009 Opt. Lett. 34 1594

    [14]

    Borri S, Patimisco P, Galli I, Mazzotti D, Giusfredi G, Akikusa N, Yamanishi M, Scamarcio G, de Natale P, Spagnolo V 2014 Appl. Phys. Lett. 104 091114

    [15]

    Faist J, Capasso F, Sivco D L, Sirtori C, Hutchinson A L, Cho A Y 1994 Science 264 553

    [16]

    Ma Y F, Yu G, Zhang J B, Yu X, Sun R, Tittel F K 2015 Sensors 15 7596

    [17]

    Dong L, Kosterev A A, Thomazy D, Tittel F K 2010 Appl. Phys. B 100 627

    [18]

    Kosterev A A, Tittel F K, Serebryakov D V, Malinovsky A L, Morozov I V 2005 Rev. Sci. Instrum. 76 043105

    [19]

    Ma Y F, Lewicki R, Razeghi M, Tittel F K 2013 Opt. Express 21 1008

  • [1] Internal dynamic detection of soliton molecules in a Ti: sapphire femtosecond laser. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191989
    [2] Zhang Ji-Ye, Zhang Jian-Wei, Zeng Yu-Gang, Zhang Jun, Ning Yong-Qiang, Zhang Xing, Qin Li, Liu Yun, Wang Li-Jun. Design of gain region of high-power vertical external cavity surface emitting semiconductor laser and its fabrication. Acta Physica Sinica, 2020, 69(5): 054204. doi: 10.7498/aps.69.20191787
    [3] Current Phases in Hofstadter Ladder with Staggered Hopping. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191964
    [4] Huang Yong-Feng, Cao Huai-Xin, Wang Wen-Hua. Conjugate linear symmetry and its application to \begin{document}$ {\mathcal{P}}{\mathcal{T}} $\end{document}-symmetry quantum theory. Acta Physica Sinica, 2020, 69(3): 030301. doi: 10.7498/aps.69.20191173
    [5] Wu Mei-Mei, Zhang Chao, Zhang Can, Sun Qian-Qian, Liu Mei. Surface enhanced Raman scattering characteristics of three-dimensional pyramid stereo composite substrate. Acta Physica Sinica, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191636
    [6] Research on few-mode PAM regenerator based on nonlinear optical fiber loop mirror. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191858
    [7] Li Chuang, Li Wei-Wei, Cai Li, Xie Dan, Liu Bao-Jun, Xiang Lan, Yang Xiao-Kuo, Dong Dan-Na, Liu Jia-Hao, Chen Ya-Bo. Flexible nitrogen dioxide gas sensor based on reduced graphene oxide sensing material using silver nanowire electrode. Acta Physica Sinica, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191390
    [8] Zhang Ya-Nan, Zhan Nan, Deng Ling-Ling, Chen Shu-Fen. Efficiency improvement in solution-processed multilayered phosphorescent white organic light emitting diodes by silica coated silver nanocubes. Acta Physica Sinica, 2020, 69(4): 047801. doi: 10.7498/aps.69.20191526
    [9] Wang Xiao-Lei, Zhao Jie-Hui, Li Miao, Jiang Guang-Ke, Hu Xiao-Xue, Zhang Nan, Zhai Hong-Chen, Liu Wei-Wei. Tight focus and field enhancement of terahertz waves using a thickness-graded silver-plated strip probe based on spoof surface plasmons. Acta Physica Sinica, 2020, 69(5): 054201. doi: 10.7498/aps.69.20191531
    [10] Thermodynamics of Laser Plasma Removal of Micro and Nano Particles. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191933
    [11] Liu Jia-He, Lu Jia-Zhe, Lei Jun-Jie, Gao Xun, Lin Jing-Quan. Effect of ambient gas pressure on characteristics of air plasma induced by nanosecond laser. Acta Physica Sinica, 2020, 69(5): 057401. doi: 10.7498/aps.69.20191540
    [12] Liu Hou-Tong, Mao Min-Juan. An accurate inversion method of aerosol extinction coefficient about ground-based lidar without needing calibration. Acta Physica Sinica, 2019, 68(7): 074205. doi: 10.7498/aps.68.20181825
    [13] Identifying two different configurations of the H32+ by the direct above-threshold ionization spectrum in two-color laser field. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20200013
    [14] Zhang Zhan-Gang, Lei Zhi-Feng, Tong Teng, Li Xiao-Hui, Wang Song-Lin, Liang Tian-Jiao, Xi Kai, Peng Chao, He Yu-Juan, Huang Yun, En Yun-Fei. Comparison of neutron induced single event upsets in 14 nm FinFET and 65 nm planar static random access memory devices. Acta Physica Sinica, 2020, 69(5): 056101. doi: 10.7498/aps.69.20191209
  • Citation:
Metrics
  • Abstract views:  352
  • PDF Downloads:  173
  • Cited By: 0
Publishing process
  • Received Date:  20 October 2015
  • Accepted Date:  25 December 2015
  • Published Online:  20 March 2016

Research on high sensitivity detection of carbon monoxide based on quantum cascade laser and quartz-enhanced photoacoustic spectroscopy

    Corresponding author: Ma Yu-Fei, mayufei@hit.edu.cn
  • 1. National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150001, China;
  • 2. Post-doctoral Mobile Station of Power Engineering and Engineering Thermophysics, School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 61505041), the Natural Science Foundation of Heilongjiang Province of China (Grant No. F2015011), the Special Financial Grant from the China Postdoctoral Science Foundation (Grant No. 2015T80350), the General Financial Grant from the China Postdoctoral Science Foundation (Grant No. 2014M560262), the Postdoctoral Fund of Heilongjiang Province, China (Grant No. LBH-Z14074), the Special Financial Grant from the Heilongjiang Province Postdoctoral Foundation of China (Grant No. LBH-TZ0602), the Fundamental Research Funds for the Central Universities of China (Grant No. HIT. NSRIF. 2015044), and the National Key Scientific Instrument and Equipment Development Projects of China (Grant No. 2012YQ040164).

Abstract: Quartz-enhanced photoacoustic spectroscopy (QEPAS) technology was invented lately. Therefore it is an innovative method for trace gas detection compared with other existing technologies. In this paper, trace gas detection for carbon monoxide (CO) based on QEPAS technology is demonstrated. In order to realize high sensitive detection, a novel mid-infrared, state-of-art 4.6 m high power, continuous wave (CW), distributed feedback (DFB) quantum cascade laser (QCL) with single mode output is used as the laser exciting source. Therefore, the strongest absorption of fundamental frequency band of CO is achieved. Using the wavelength modulation spectroscopy and the 2nd harmonic detection, the influence of laser wavelength modulation depth on QEPAS signal level is investigated. Two important parameters of Q-factor and resonant frequency for quartz tuning fork as a function of gas pressure are measured. After optimization of the modulation depth of laser wavelength, the gas pressure of CO:N2 gas mixture and the improving speed of the V-R relaxation rate through the addition of water vapor, a minimum detection limit (MDL) of 1.95 parts per billion by volume (ppbv) for CO at gas pressure of 500 Torr and modulation depth of 0.2 cm-1 is achieved with a 1 sec acquisition time and the addition of 2.6% water vapor in the analyzed gas mixture. Finally, the influence of level lifetime of the targeted gas on QEPAS signal amplitude is investigated by comparison of CO QEPAS sensor performance using two different CO absorption lines of R(5) and R(6) located at 2165.6 cm-1 and 2169.2 cm-1respectively. The expression of the QEPAS signal amplitude is modified by adding the level lifetime parameter for a better precision.

Reference (19)

Catalog

    /

    返回文章
    返回