Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A molecular dynamics simulation of thermodynamic properties of 1, 3, 5-triamino-2, 4, 6-trinitrobenzene under high pressure and high temperature

Fan Hang Nie Fu-De Long Yao Chen Jun

A molecular dynamics simulation of thermodynamic properties of 1, 3, 5-triamino-2, 4, 6-trinitrobenzene under high pressure and high temperature

Fan Hang, Nie Fu-De, Long Yao, Chen Jun
PDF
Get Citation
  • Equation of states and thermodynamic properties of insensitive high explosive 1, 3, 5-triamino-2, 4, 6-trinitrobenzene (TATB) are investigated by using molecular dynamics simulation, where an all-atom force field for TATB developed by Richard H. Gee and isothermal-isobaric molecular dynamics (NPT-MD) methods are used. Results obtained include thermal expansion coefficient, elastic constants, tensile modulus, and debye frequency under high temperature and high pressure. The volume coefficient of thermal expansion for crystalline TATB is calculated in a temperature range of 200 to 500 K and at atmospheric pressure. The result, 35.910-5 K-1, is in general agreements with the experimental results. Results of elastic constants show that the crystalline TATB is an orthotropic material. The calculated elastic constants decrease with increasing temperature in the range from 0 to 450 K, while increase as the pressure increases from 0 to 50 GPa. And the bulk modulus at 300 K is 11.32 GPa, which is in good agreement with the available experimental results. Results obtained above have been compared with available experimental data, and also discussed in relation to the previous calculations. The above results are better than existing ones gained by others. In addition, the elastic anisotropy becomes lower with increasing temperature or pressure. As the temperature goes up to 400 K, the lattice becomes unstable. The sound speed and Debye frequency are calculated by using the data of elastic constants at different pressures. This provides a theoretical basis to calculate the anisotropic thermal conductivity for crystalline TATB.
      Corresponding author: Chen Jun, jun_chen@iapcm.ac.cn
    • Funds: Project supported by the National Natural Science Foudation of China (Grant No. 11572053), the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. U1530262), the Development Foundation of China Academy of Engineering Physics (Grant No. 2014 A0101004), and the Defence Industrial Technology Development Program, China (Grant No. B1520132013).
    [1]

    Voigt-Martin I G, Li G, Yakimanski A Schulz G, Jens Wolff J J 1996 J. Am. Chem. Soc. 118 12830

    [2]

    Brill T B, James K J 1993 Chem. Rev. 93 2667

    [3]

    Zyss J, Ledoux I 1994 Chem. Rev. 94 77

    [4]

    Boddu V M Viswanath D S, Ghosh T K, Damavarapu R 2010 J. Hazard. Mater. 181 1

    [5]

    Gee R H, Roszak S, Balasubramanian K, Fried L E 2004 J. Chem. Phys. 120 7059

    [6]

    Guo F, Zhang H, Hu H Q, Cheng X L 2014 Chin. Phys. B 23 046501

    [7]

    Wang J R, Zhu J, Hao Y J, Ji G F, Xiang G, Zou Y C 2014 Acta Phys. Sin. 63 186401 (in Chinese) [王金荣, 朱俊, 郝彦军, 姬广富, 向钢, 邹阳春 2014 物理学报 63 186401]

    [8]

    Stevens L L, Velisavljevic N, Hooks D E, Dattelbaum D M 2008 Propell Explos. Pyrot. 33 286

    [9]

    Rykounov A A 2015 J. Appl. Phys. 117 215901

    [10]

    Bedrov D, Borodin O, Smith G D, Sewell T D, Dattelbaum D M 2009 J. Chem. Phys. 131 224703

    [11]

    Kroonblawd M P, Sewell T D 2013 J. Chem. Phys. 139 074503

    [12]

    Kroonblawd M P, Sewell T D 2014 J. Chem. Phys. 141 184501

    [13]

    Xiao J J, Gu C G, Fang G Y, Zhu W, Xiao H M 2005 Acta Chim. Sin. 63 439 (in Chinese) [肖继军, 谷成刚, 方国勇, 朱伟, 肖鹤鸣 2005 化学学报 63 439]

    [14]

    Zhu W, Xiao J J, Huang H, Ma X F, Li J S, Xiao H M 2007 J. Nanjing Univ. Sci. Tech. 31 243 (in Chinese) [朱伟, 肖继军, 黄辉, 马秀芳, 李金山, 肖鹤鸣 2007 南京理工大学学报 31 243]

    [15]

    Sun H 1998 J. Phys. Chem. B 102, 7338

    [16]

    Qi X F, Zhang X H, Song Z W, Liu P, Li J Z, Liu M 2012 Chin. Chem. Propell. Poly. Mater. 10 37 (in Chinese) [齐晓飞, 张晓宏, 宋振伟, 刘鹏, 李吉祯, 刘萌 2012 化学推进剂与高分子材料 10 37]

    [17]

    Hagler A T, Lifson S, Dauber P 1979 J. Am. Chem. Soc. 101 5122

    [18]

    Mayo S L Olafson B D Goddard III W A 1990 J. Phys. Chem. 94 8897

    [19]

    Rappe A K, Casewit C J, Colwell K S Goddard III W A, Skiff W M 1992 J. Am. Chem. Soc. 114 10024

    [20]

    Zhang C Y, Wang X C Huang H 2008 J. Am. Chem. Soc. 130 8359

    [21]

    Neeraj R, Divesh B 2008 J. Chem. Phys. 129 194510

    [22]

    Cheng T 2009 M. D. Dissertation (Shanghai: Shanghai Jiao Tong University) (in Chinese) [程涛 2009 硕士学位论文(上海: 上海交通大学)]

    [23]

    Jin Z, Liu J, Wang L L, Cao F L, Sun H 2014 Acta Phys. Chim. Sin. 30 654 (in Chinese) [金钊, 刘建, 王丽莉, 曹风雷, 孙淮 2014 物理化学学报 30 654]

    [24]

    Plimpton S 1995 J. Comp. Phys. 117 1

    [25]

    Nose S 1984 Mol. Phys. 52 255

    [26]

    Hoover W G 1985 Phys. Rev. A 31 1695

    [27]

    Wang B, Liu Y, Ye J W 2012 Acta Phys. Sin. 61 186501 (in Chinese) [王斌, 刘颖, 叶金文 2012 物理学报 61 186501]

    [28]

    Marmier A, Lethbridge Z A D, Walton R I, Smith C W, Parker S C, Evans K E 2010 Comp. Phys. Comm. 181 2102

    [29]

    Wang Z C 1992 Thermodynamics Statistic Mechanics (Beijing: Higher Education Press) p340 (in Chinese) [汪志诚 1992 热力学统计物理 (北京:高等教育出版社) 第340页]

    [30]

    Lu X S, Liang J K 1981 Acta Phys. Sin. 30 1361 (in Chinese) [陆学善, 梁敬魁 1981 物理学报 30 1361]

    [31]

    Sin'ko G V, Smirnov N A 2002 J. Phys.: Condens. Matter 14 6989

    [32]

    Long Y, Liu Y G, Nie F D, Chen J 2012 Philos. Mag. 92 1023

    [33]

    Gibbs T R, Popolato A 1980 LASL Explosive Property Data (Berkeley: University of California Press)

    [34]

    Kolb J R, Rizzo H F 1979 Propell. Explos. Pyrot. 4 10

    [35]

    Pastine D J, Bernecker R R 1974 J. Appl. Phys. 45 4458

    [36]

    Olinger B, Cady H 1976 6th Symposium (International) on Detonation Coronado, California, USA August 24-27, 1976 224

    [37]

    Byrd E F C, Rice B M 2007 J. Phys. Chem. C 111 2787

    [38]

    Wu Q, Zhu W H, Xiao H M 2014 RSC Adv. 4 53149

    [39]

    Chellappa R, Dattelbaum D 2015 19th Biennial Conference of the APS Topical Group on Shock Compression of Condensed Matter Florida, USA June 14-19, 2015

    [40]

    Coleburn N L, Liddiard T P 1966 J. Chem. Phys 44 1929

    [41]

    Craig B G 1978 Los Alamos Scientific Laboratory Private Communication

    [42]

    Guo F, Zhang H, Hu H Q, Cheng X L, Zhang L Y 2015 Chin. Phys. B 24 118201

    [43]

    Menikoff R, Swell T D 2001 Technical Report LA-UR-00-3608-rev Los Alamos National Laboratory

    [44]

    Born M, Huang K 1989 Dynamical Theory of Crystal Lattices (Beijing: Beijing Univiersity Press) p151 (in Chinese) [波恩, 黄昆 1989 晶格动力学理论 (北京: 北京大学出版社)第151页]

    [45]

    Chen J, Long Y, Chen D Q 2013 Chin. J. High Pressure Phys. 27 199 (in Chinese) [陈军, 龙瑶, 陈栋泉 2013 高压物理学报 27 199]

  • [1]

    Voigt-Martin I G, Li G, Yakimanski A Schulz G, Jens Wolff J J 1996 J. Am. Chem. Soc. 118 12830

    [2]

    Brill T B, James K J 1993 Chem. Rev. 93 2667

    [3]

    Zyss J, Ledoux I 1994 Chem. Rev. 94 77

    [4]

    Boddu V M Viswanath D S, Ghosh T K, Damavarapu R 2010 J. Hazard. Mater. 181 1

    [5]

    Gee R H, Roszak S, Balasubramanian K, Fried L E 2004 J. Chem. Phys. 120 7059

    [6]

    Guo F, Zhang H, Hu H Q, Cheng X L 2014 Chin. Phys. B 23 046501

    [7]

    Wang J R, Zhu J, Hao Y J, Ji G F, Xiang G, Zou Y C 2014 Acta Phys. Sin. 63 186401 (in Chinese) [王金荣, 朱俊, 郝彦军, 姬广富, 向钢, 邹阳春 2014 物理学报 63 186401]

    [8]

    Stevens L L, Velisavljevic N, Hooks D E, Dattelbaum D M 2008 Propell Explos. Pyrot. 33 286

    [9]

    Rykounov A A 2015 J. Appl. Phys. 117 215901

    [10]

    Bedrov D, Borodin O, Smith G D, Sewell T D, Dattelbaum D M 2009 J. Chem. Phys. 131 224703

    [11]

    Kroonblawd M P, Sewell T D 2013 J. Chem. Phys. 139 074503

    [12]

    Kroonblawd M P, Sewell T D 2014 J. Chem. Phys. 141 184501

    [13]

    Xiao J J, Gu C G, Fang G Y, Zhu W, Xiao H M 2005 Acta Chim. Sin. 63 439 (in Chinese) [肖继军, 谷成刚, 方国勇, 朱伟, 肖鹤鸣 2005 化学学报 63 439]

    [14]

    Zhu W, Xiao J J, Huang H, Ma X F, Li J S, Xiao H M 2007 J. Nanjing Univ. Sci. Tech. 31 243 (in Chinese) [朱伟, 肖继军, 黄辉, 马秀芳, 李金山, 肖鹤鸣 2007 南京理工大学学报 31 243]

    [15]

    Sun H 1998 J. Phys. Chem. B 102, 7338

    [16]

    Qi X F, Zhang X H, Song Z W, Liu P, Li J Z, Liu M 2012 Chin. Chem. Propell. Poly. Mater. 10 37 (in Chinese) [齐晓飞, 张晓宏, 宋振伟, 刘鹏, 李吉祯, 刘萌 2012 化学推进剂与高分子材料 10 37]

    [17]

    Hagler A T, Lifson S, Dauber P 1979 J. Am. Chem. Soc. 101 5122

    [18]

    Mayo S L Olafson B D Goddard III W A 1990 J. Phys. Chem. 94 8897

    [19]

    Rappe A K, Casewit C J, Colwell K S Goddard III W A, Skiff W M 1992 J. Am. Chem. Soc. 114 10024

    [20]

    Zhang C Y, Wang X C Huang H 2008 J. Am. Chem. Soc. 130 8359

    [21]

    Neeraj R, Divesh B 2008 J. Chem. Phys. 129 194510

    [22]

    Cheng T 2009 M. D. Dissertation (Shanghai: Shanghai Jiao Tong University) (in Chinese) [程涛 2009 硕士学位论文(上海: 上海交通大学)]

    [23]

    Jin Z, Liu J, Wang L L, Cao F L, Sun H 2014 Acta Phys. Chim. Sin. 30 654 (in Chinese) [金钊, 刘建, 王丽莉, 曹风雷, 孙淮 2014 物理化学学报 30 654]

    [24]

    Plimpton S 1995 J. Comp. Phys. 117 1

    [25]

    Nose S 1984 Mol. Phys. 52 255

    [26]

    Hoover W G 1985 Phys. Rev. A 31 1695

    [27]

    Wang B, Liu Y, Ye J W 2012 Acta Phys. Sin. 61 186501 (in Chinese) [王斌, 刘颖, 叶金文 2012 物理学报 61 186501]

    [28]

    Marmier A, Lethbridge Z A D, Walton R I, Smith C W, Parker S C, Evans K E 2010 Comp. Phys. Comm. 181 2102

    [29]

    Wang Z C 1992 Thermodynamics Statistic Mechanics (Beijing: Higher Education Press) p340 (in Chinese) [汪志诚 1992 热力学统计物理 (北京:高等教育出版社) 第340页]

    [30]

    Lu X S, Liang J K 1981 Acta Phys. Sin. 30 1361 (in Chinese) [陆学善, 梁敬魁 1981 物理学报 30 1361]

    [31]

    Sin'ko G V, Smirnov N A 2002 J. Phys.: Condens. Matter 14 6989

    [32]

    Long Y, Liu Y G, Nie F D, Chen J 2012 Philos. Mag. 92 1023

    [33]

    Gibbs T R, Popolato A 1980 LASL Explosive Property Data (Berkeley: University of California Press)

    [34]

    Kolb J R, Rizzo H F 1979 Propell. Explos. Pyrot. 4 10

    [35]

    Pastine D J, Bernecker R R 1974 J. Appl. Phys. 45 4458

    [36]

    Olinger B, Cady H 1976 6th Symposium (International) on Detonation Coronado, California, USA August 24-27, 1976 224

    [37]

    Byrd E F C, Rice B M 2007 J. Phys. Chem. C 111 2787

    [38]

    Wu Q, Zhu W H, Xiao H M 2014 RSC Adv. 4 53149

    [39]

    Chellappa R, Dattelbaum D 2015 19th Biennial Conference of the APS Topical Group on Shock Compression of Condensed Matter Florida, USA June 14-19, 2015

    [40]

    Coleburn N L, Liddiard T P 1966 J. Chem. Phys 44 1929

    [41]

    Craig B G 1978 Los Alamos Scientific Laboratory Private Communication

    [42]

    Guo F, Zhang H, Hu H Q, Cheng X L, Zhang L Y 2015 Chin. Phys. B 24 118201

    [43]

    Menikoff R, Swell T D 2001 Technical Report LA-UR-00-3608-rev Los Alamos National Laboratory

    [44]

    Born M, Huang K 1989 Dynamical Theory of Crystal Lattices (Beijing: Beijing Univiersity Press) p151 (in Chinese) [波恩, 黄昆 1989 晶格动力学理论 (北京: 北京大学出版社)第151页]

    [45]

    Chen J, Long Y, Chen D Q 2013 Chin. J. High Pressure Phys. 27 199 (in Chinese) [陈军, 龙瑶, 陈栋泉 2013 高压物理学报 27 199]

  • [1] Yin Yu-Ming, Zhao Ling-Ling. Effects of salt concentrations and pore surface structure on the water flow through rock nanopores. Acta Physica Sinica, 2020, 69(5): 054701. doi: 10.7498/aps.69.20191742
    [2] Molecular dynamics study on structural characteristics of Lennard-Jones supercritical fluids. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191591
    [3] Jian Jun, Lei Jiao, Fan Qun-Chao, Fan Zhi-Xiang, Ma Jie, Fu Jia, Li Hui-Dong, Xu Yong-Gen. Theoreticalstudy on thermodynamicproperties of NO gas. Acta Physica Sinica, 2020, 69(5): 053301. doi: 10.7498/aps.69.20191723
    [4] Guo Hui, Wang Ya-Jun, Wang Lin-Xue, Zhang Xiao-Fei. Dynamics of ring dark solitons in Bose-Einstein condensates. Acta Physica Sinica, 2020, 69(1): 010302. doi: 10.7498/aps.69.20191424
    [5] Thermodynamics of Laser Plasma Removal of Micro and Nano Particles. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191933
    [6] Liao Tian-Jun, Lü Yi-Xiang. Thermodynamic limit and optimal performance prediction of thermophotovoltaic energy conversion devices. Acta Physica Sinica, 2020, 69(5): 057202. doi: 10.7498/aps.69.20191835
    [7] Wu Mei-Mei, Zhang Chao, Zhang Can, Sun Qian-Qian, Liu Mei. Surface enhanced Raman scattering characteristics of three-dimensional pyramid stereo composite substrate. Acta Physica Sinica, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191636
    [8] Ren Xian-Li, Zhang Wei-Wei, Wu Xiao-Yong, Wu Lu, Wang Yue-Xia. Prediction of short range order in high-entropy alloys and its effect on the electronic, magnetic and mechanical properties. Acta Physica Sinica, 2020, 69(4): 046102. doi: 10.7498/aps.69.20191671
    [9] Wang Jing-Li, Chen Zi-Yu, Chen He-Ming. Design of polarization-insensitive 1 × 2 multimode interference demultiplexer based on Si3N4/SiNx/Si3N4 sandwiched structure. Acta Physica Sinica, 2020, 69(5): 054206. doi: 10.7498/aps.69.20191449
    [10] Internal dynamic detection of soliton molecules in a Ti: sapphire femtosecond laser. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191989
    [11] Identifying two different configurations of the H32+ by the direct above-threshold ionization spectrum in two-color laser field. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20200013
  • Citation:
Metrics
  • Abstract views:  479
  • PDF Downloads:  181
  • Cited By: 0
Publishing process
  • Received Date:  09 November 2015
  • Accepted Date:  14 December 2015
  • Published Online:  20 March 2016

A molecular dynamics simulation of thermodynamic properties of 1, 3, 5-triamino-2, 4, 6-trinitrobenzene under high pressure and high temperature

    Corresponding author: Chen Jun, jun_chen@iapcm.ac.cn
  • 1. Institute of Chemical Materials, CAEP, Mianyang 621900, China;
  • 2. Beijing Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
Fund Project:  Project supported by the National Natural Science Foudation of China (Grant No. 11572053), the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. U1530262), the Development Foundation of China Academy of Engineering Physics (Grant No. 2014 A0101004), and the Defence Industrial Technology Development Program, China (Grant No. B1520132013).

Abstract: Equation of states and thermodynamic properties of insensitive high explosive 1, 3, 5-triamino-2, 4, 6-trinitrobenzene (TATB) are investigated by using molecular dynamics simulation, where an all-atom force field for TATB developed by Richard H. Gee and isothermal-isobaric molecular dynamics (NPT-MD) methods are used. Results obtained include thermal expansion coefficient, elastic constants, tensile modulus, and debye frequency under high temperature and high pressure. The volume coefficient of thermal expansion for crystalline TATB is calculated in a temperature range of 200 to 500 K and at atmospheric pressure. The result, 35.910-5 K-1, is in general agreements with the experimental results. Results of elastic constants show that the crystalline TATB is an orthotropic material. The calculated elastic constants decrease with increasing temperature in the range from 0 to 450 K, while increase as the pressure increases from 0 to 50 GPa. And the bulk modulus at 300 K is 11.32 GPa, which is in good agreement with the available experimental results. Results obtained above have been compared with available experimental data, and also discussed in relation to the previous calculations. The above results are better than existing ones gained by others. In addition, the elastic anisotropy becomes lower with increasing temperature or pressure. As the temperature goes up to 400 K, the lattice becomes unstable. The sound speed and Debye frequency are calculated by using the data of elastic constants at different pressures. This provides a theoretical basis to calculate the anisotropic thermal conductivity for crystalline TATB.

Reference (45)

Catalog

    /

    返回文章
    返回