Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of defect states on proton conductivity of Y-doped BaZrO3

Yang Yi-Bin Gong Yu Liu Cai-Lin Luo Yang-Ming Chen Ping

Influence of defect states on proton conductivity of Y-doped BaZrO3

Yang Yi-Bin, Gong Yu, Liu Cai-Lin, Luo Yang-Ming, Chen Ping
PDF
Get Citation
  • Nuclear energy is a promising new energy to solve energy crisis. Separation and purification of hydrogen isotopes play an important role in the developing and utilizing of nuclear energy. BaZrO3-based oxide is an effective material for the separation and purification of hydrogen isotopes. In this paper, a series of BaZr1-xYxO3- (0 x 0.3) are synthesized by high-temperature solid state reaction method. The raw materials are calcined at 1200 ℃ for 5 h in air. Then the calcined powder is consolidated by an isostatic press and sintered at 1500 ℃ for 48 h in air, using a furnace equipped with aluminum oxide heater. Phase purity and phase structure of the obtained BaZr1-xYxO3- are analyzed by XRD. Results show that the structures of the BaZr1-xYxO3- are consistent with the BaZrO3 diffraction pattern (JCPDS 06-399). The Y ions are already incorporated into the lattice of BaZrO3, and the maximum doping concentration of Y rangs from 0.24 to 0.26. Besides, the proton conductivity of Y-doped BaZrO3 is determined under hydrogen atmosphere by the electrochemical impedance spectroscopy (EIS). Experiments show that the BaZr1-xYxO3- with 20 mol% Y has the highest conductivity of 0.0015 S/cm at 600 ℃ which is higher than that of the BaZrO3 matrix material by two orders of magnitude. As the concentration of Y increases, the strain in the crystal structure of BaZrO3 increases, which may be created by the defect of Y-doped BaZrO3. In order to reveal the mechanism of proton conduction in Y-doped BaZrO3, the influence of defect types on proton conduction is also investigated via photoluminescence (PL) and thermoluminescence (TL). For the BaZrO3 matrix, an asymmetrical broad emission peak at 350 to 650 nm occurs in PL with an excitation light of 334 nm. Analysis of Gaussian decomposition shows that the asymmetrical broad emission peak is created by two kinds of different oxygen vacancies (Vo..), which are beneficial to proton conduction. Interestingly, when BaZrO3 is doped with Y, a new emission peak P1 at 388 nm appears owing to the negatively charged YZr' of proton-trapping-type defects, which is harmful to the proton conduction in general. TL analysis shows that the number of YZr' increases and the depth of the trap reduce, as the Y concentration increases in BaZr1-xYxO3- (x=0, 0.05, 0.1, 0.2). Although the YZr' is noxious for the proton conduction, the proton conductivity of BaZr1-xYxO3- (x=0, 0.05, 0.1, 0.2) can be improved via the increase of the release ability of proton trapping as the depth of trap is reduced.
      Corresponding author: Gong Yu, gongy2007@163.com;liucailin2013@163.com ; Liu Cai-Lin, gongy2007@163.com;liucailin2013@163.com
    • Funds: Project supported by the Science and Technology Funds of China Academy of Engineering Physics (Grant No. 2013B0301037).
    [1]

    Tanaka S, Kiyose R 1979 J. Nucl. Sci. Technol. 16 923

    [2]

    Iwahara H, Uchida H, Ono K, Ogaki K 1988 J. Electrochem. Soc. 135 529

    [3]

    Yajima T, Koide K, Takai H, Fukatsu N, Iwahara H 1995 Solid State Ionics 79 333

    [4]

    Katahira K, Matsumoto H, Iwahara H, Koide K, Iwamoto T 2001 Sensor Actuat. B: Chem. 73 130

    [5]

    Ma G L, Xu J, Zhang M, Wang X W, Yin J L, Xu J H 2011 Prog. Chem. 23 441 (in Chinese) [马桂林, 许佳, 张明, 王小稳, 尹金玲, 徐建红 2011 化学进展 23 441]

    [6]

    Mukundan R, Brosha E L, Birdsell S A, Costello A L, Garzon F H, Willms R S 1999 J. Electrochem. Soc. 146 2184

    [7]

    Balachandran U, Lee T H, Chen L, Song S J, Picciolo J J, Dorris S E 2006 Fuel 85 150

    [8]

    Kakuta T, Hirata S, Mori S, Konishi S, Kawamura Y, Nishi M, Ohara Y 2002 Fusion. Sci. Technol. 41 1069

    [9]

    Kato M, Itoh T, Sugai H, Kawamura Y, Hayashi T, Tanase M N M, Matsuzaki T, Ishida K, Nagamine K 2002 Fusion. Sci. Technol. 41 859

    [10]

    Yamazaki Y, Blanc F, Okuyama Y, Buannic L, Lucio-Vega J C, Grey C P, Haile S M 2013 Nat. Mater. 12 647

    [11]

    Sun W, Zhu Z, Shi Z, Liu W 2013 J. Power Sources 229 95

    [12]

    Yamazaki Y, Hernandez-Sanchez R, Haile S M 2009 Chem. Mater. 21 2755

    [13]

    Yamazaki Y, Hernandez-Sanchez R, Haile S M 2010 J. Mater. Chem. A 20 8158

    [14]

    Sun Z, Fabbri E, Bi L, Traversa E 2012 J. Am. Ceram. Soc. 95 627

    [15]

    Cervera R B, Oyama Y, Miyoshi S, Oikawa I, Takamura H, Yamaguchi S 2014 Solid State Ionics 264 1

    [16]

    Fabbri E, Bi L, Tanaka H, Pergolesi D, Traversa E 2011 Adv. Funct. Mater. 21 158

    [17]

    Bi L, Fabbri E, Sun Z, Traversa E 2011 Solid State Ionics 196 59

    [18]

    Pergolesi D, Fabbri E, D Epifanio A, Di Bartolomeo E, Tebano A, Sanna S, Traversa E 2010 Nat. Mater. 9 846

    [19]

    Tong J, Clark D, Bernau L, Sanders M, O'Hayre R 2010 J. Mater. Chem. 20 6333

    [20]

    Han D, Kishida K, Inui H, Uda T 2014 RSC Adv. 4 31589

    [21]

    Cervera R B, Oyama Y, Miyoshi S, Kobayashi K, Yagi T, Yamaguchi S 2008 Solid State Ionics 179 236

    [22]

    Sahraoui D Z, Mineva T 2013 Solid State Ionics 253 195

    [23]

    Gong Y, Wang Y, Jiang Z, Xu X, Li Y 2009 Mater. Res. Bull. 44 1916

    [24]

    Gong Y, Wang Y, Xu X, Li Y, Jiang Z 2009 J. Electrochem. Soc. 156 J295

    [25]

    Gong Y, Wang Y, Li Y, Xu X 2010 J. Electrochem. Soc. 157 J208

    [26]

    Gong Y, Wang Y, Li Y, Xu X, Zeng W 2011 Opt. Express 19 4310

    [27]

    Gong Y, Wang Y, Xu X, Li Y. Xin S, Shi L 2011 Opt. Mater. 33 1781

    [28]

    Jing Z Q, Wang Y H, Gong Y 2010 Chin. Phys. B 19 027801

    [29]

    Gong Y, Chen B H, Xing L P, Gu M, Xiong J, Gao X L, Wang Y H 2013 Acta Phys. Sin. 62 153201 (in Chinese) [龚宇, 陈柏桦, 熊亮萍, 古梅, 熊洁, 高小铃, 王育华 2013 物理学报 62 153201]

    [30]

    He X B, Yang T Z, Cai J M, Zhang C D, Guo H M, Shi D X, Shen C M, Gao H J 2008 Chin. Phys. B 17 3444

    [31]

    Bian L, Wang T, Song Z, Liu Z H, Li T X, Liu Q L 2013 Chin. Phys. B 22 077801

    [32]

    Zhang B, Lu S Z, Zhang H J, Yang Q H 2010 Chin. Phys. B 19 077805

    [33]

    Kuz'min A V, Balakireva V B, Plaksin S V, Gorelov V P 2009 Russ. J. Electrochem. 45 1351

    [34]

    Romero V H, de la Rosa E, Salas P, Velazquez-Salazar J J 2012 J. Solid State Chem. 196 243

  • [1]

    Tanaka S, Kiyose R 1979 J. Nucl. Sci. Technol. 16 923

    [2]

    Iwahara H, Uchida H, Ono K, Ogaki K 1988 J. Electrochem. Soc. 135 529

    [3]

    Yajima T, Koide K, Takai H, Fukatsu N, Iwahara H 1995 Solid State Ionics 79 333

    [4]

    Katahira K, Matsumoto H, Iwahara H, Koide K, Iwamoto T 2001 Sensor Actuat. B: Chem. 73 130

    [5]

    Ma G L, Xu J, Zhang M, Wang X W, Yin J L, Xu J H 2011 Prog. Chem. 23 441 (in Chinese) [马桂林, 许佳, 张明, 王小稳, 尹金玲, 徐建红 2011 化学进展 23 441]

    [6]

    Mukundan R, Brosha E L, Birdsell S A, Costello A L, Garzon F H, Willms R S 1999 J. Electrochem. Soc. 146 2184

    [7]

    Balachandran U, Lee T H, Chen L, Song S J, Picciolo J J, Dorris S E 2006 Fuel 85 150

    [8]

    Kakuta T, Hirata S, Mori S, Konishi S, Kawamura Y, Nishi M, Ohara Y 2002 Fusion. Sci. Technol. 41 1069

    [9]

    Kato M, Itoh T, Sugai H, Kawamura Y, Hayashi T, Tanase M N M, Matsuzaki T, Ishida K, Nagamine K 2002 Fusion. Sci. Technol. 41 859

    [10]

    Yamazaki Y, Blanc F, Okuyama Y, Buannic L, Lucio-Vega J C, Grey C P, Haile S M 2013 Nat. Mater. 12 647

    [11]

    Sun W, Zhu Z, Shi Z, Liu W 2013 J. Power Sources 229 95

    [12]

    Yamazaki Y, Hernandez-Sanchez R, Haile S M 2009 Chem. Mater. 21 2755

    [13]

    Yamazaki Y, Hernandez-Sanchez R, Haile S M 2010 J. Mater. Chem. A 20 8158

    [14]

    Sun Z, Fabbri E, Bi L, Traversa E 2012 J. Am. Ceram. Soc. 95 627

    [15]

    Cervera R B, Oyama Y, Miyoshi S, Oikawa I, Takamura H, Yamaguchi S 2014 Solid State Ionics 264 1

    [16]

    Fabbri E, Bi L, Tanaka H, Pergolesi D, Traversa E 2011 Adv. Funct. Mater. 21 158

    [17]

    Bi L, Fabbri E, Sun Z, Traversa E 2011 Solid State Ionics 196 59

    [18]

    Pergolesi D, Fabbri E, D Epifanio A, Di Bartolomeo E, Tebano A, Sanna S, Traversa E 2010 Nat. Mater. 9 846

    [19]

    Tong J, Clark D, Bernau L, Sanders M, O'Hayre R 2010 J. Mater. Chem. 20 6333

    [20]

    Han D, Kishida K, Inui H, Uda T 2014 RSC Adv. 4 31589

    [21]

    Cervera R B, Oyama Y, Miyoshi S, Kobayashi K, Yagi T, Yamaguchi S 2008 Solid State Ionics 179 236

    [22]

    Sahraoui D Z, Mineva T 2013 Solid State Ionics 253 195

    [23]

    Gong Y, Wang Y, Jiang Z, Xu X, Li Y 2009 Mater. Res. Bull. 44 1916

    [24]

    Gong Y, Wang Y, Xu X, Li Y, Jiang Z 2009 J. Electrochem. Soc. 156 J295

    [25]

    Gong Y, Wang Y, Li Y, Xu X 2010 J. Electrochem. Soc. 157 J208

    [26]

    Gong Y, Wang Y, Li Y, Xu X, Zeng W 2011 Opt. Express 19 4310

    [27]

    Gong Y, Wang Y, Xu X, Li Y. Xin S, Shi L 2011 Opt. Mater. 33 1781

    [28]

    Jing Z Q, Wang Y H, Gong Y 2010 Chin. Phys. B 19 027801

    [29]

    Gong Y, Chen B H, Xing L P, Gu M, Xiong J, Gao X L, Wang Y H 2013 Acta Phys. Sin. 62 153201 (in Chinese) [龚宇, 陈柏桦, 熊亮萍, 古梅, 熊洁, 高小铃, 王育华 2013 物理学报 62 153201]

    [30]

    He X B, Yang T Z, Cai J M, Zhang C D, Guo H M, Shi D X, Shen C M, Gao H J 2008 Chin. Phys. B 17 3444

    [31]

    Bian L, Wang T, Song Z, Liu Z H, Li T X, Liu Q L 2013 Chin. Phys. B 22 077801

    [32]

    Zhang B, Lu S Z, Zhang H J, Yang Q H 2010 Chin. Phys. B 19 077805

    [33]

    Kuz'min A V, Balakireva V B, Plaksin S V, Gorelov V P 2009 Russ. J. Electrochem. 45 1351

    [34]

    Romero V H, de la Rosa E, Salas P, Velazquez-Salazar J J 2012 J. Solid State Chem. 196 243

  • [1] Xu Xian-Da, Zhao Lei, Sun Wei-Feng. First-principles on the energy band mechanism for modifying conduction property of graphene nanomeshes. Acta Physica Sinica, 2020, 69(4): 047101. doi: 10.7498/aps.69.20190657
    [2] Zhao Jian-Ning, Liu Dong-Huan, Wei Dong, Shang Xin-Chun. Thermal rectification mechanism of one-dimensional composite structure with interface thermal contact resistance. Acta Physica Sinica, 2020, 69(5): 056501. doi: 10.7498/aps.69.20191409
    [3] Liu Xiang, Mi Wen-Bo. Structure, Magnetic and Transport Properties of Fe3O4 near Verwey Transition. Acta Physica Sinica, 2020, 69(4): 040505. doi: 10.7498/aps.69.20191763
    [4] Wang Jing-Li, Chen Zi-Yu, Chen He-Ming. Design of polarization-insensitive 1 × 2 multimode interference demultiplexer based on Si3N4/SiNx/Si3N4 sandwiched structure. Acta Physica Sinica, 2020, 69(5): 054206. doi: 10.7498/aps.69.20191449
    [5] Effect of Swift Heavy Ions Irradiation on the Microstructure and Current-Carrying Capability in YBa2Cu3O7-δ High Temperature Superconductor Films. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191914
    [6] Preparing GaN nanowires on Al2O3 substrate without catalyst and its optical property research. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191923
  • Citation:
Metrics
  • Abstract views:  525
  • PDF Downloads:  156
  • Cited By: 0
Publishing process
  • Received Date:  06 September 2015
  • Accepted Date:  02 October 2015
  • Published Online:  20 March 2016

Influence of defect states on proton conductivity of Y-doped BaZrO3

Fund Project:  Project supported by the Science and Technology Funds of China Academy of Engineering Physics (Grant No. 2013B0301037).

Abstract: Nuclear energy is a promising new energy to solve energy crisis. Separation and purification of hydrogen isotopes play an important role in the developing and utilizing of nuclear energy. BaZrO3-based oxide is an effective material for the separation and purification of hydrogen isotopes. In this paper, a series of BaZr1-xYxO3- (0 x 0.3) are synthesized by high-temperature solid state reaction method. The raw materials are calcined at 1200 ℃ for 5 h in air. Then the calcined powder is consolidated by an isostatic press and sintered at 1500 ℃ for 48 h in air, using a furnace equipped with aluminum oxide heater. Phase purity and phase structure of the obtained BaZr1-xYxO3- are analyzed by XRD. Results show that the structures of the BaZr1-xYxO3- are consistent with the BaZrO3 diffraction pattern (JCPDS 06-399). The Y ions are already incorporated into the lattice of BaZrO3, and the maximum doping concentration of Y rangs from 0.24 to 0.26. Besides, the proton conductivity of Y-doped BaZrO3 is determined under hydrogen atmosphere by the electrochemical impedance spectroscopy (EIS). Experiments show that the BaZr1-xYxO3- with 20 mol% Y has the highest conductivity of 0.0015 S/cm at 600 ℃ which is higher than that of the BaZrO3 matrix material by two orders of magnitude. As the concentration of Y increases, the strain in the crystal structure of BaZrO3 increases, which may be created by the defect of Y-doped BaZrO3. In order to reveal the mechanism of proton conduction in Y-doped BaZrO3, the influence of defect types on proton conduction is also investigated via photoluminescence (PL) and thermoluminescence (TL). For the BaZrO3 matrix, an asymmetrical broad emission peak at 350 to 650 nm occurs in PL with an excitation light of 334 nm. Analysis of Gaussian decomposition shows that the asymmetrical broad emission peak is created by two kinds of different oxygen vacancies (Vo..), which are beneficial to proton conduction. Interestingly, when BaZrO3 is doped with Y, a new emission peak P1 at 388 nm appears owing to the negatively charged YZr' of proton-trapping-type defects, which is harmful to the proton conduction in general. TL analysis shows that the number of YZr' increases and the depth of the trap reduce, as the Y concentration increases in BaZr1-xYxO3- (x=0, 0.05, 0.1, 0.2). Although the YZr' is noxious for the proton conduction, the proton conductivity of BaZr1-xYxO3- (x=0, 0.05, 0.1, 0.2) can be improved via the increase of the release ability of proton trapping as the depth of trap is reduced.

Reference (34)

Catalog

    /

    返回文章
    返回