Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dynamics of polarons in organic conjugated polymers with impurity ions

Liu Jun-Juan Wei Zeng-Jiang Chang Hong Zhang Ya-Lin Di Bing

Dynamics of polarons in organic conjugated polymers with impurity ions

Liu Jun-Juan, Wei Zeng-Jiang, Chang Hong, Zhang Ya-Lin, Di Bing
PDF
Get Citation
  • Based on the one-dimensional tight-binding Su-Schrieffer-Heeger (SSH) model, and using the molecular dynamics method, we discuss the dynamics of electron and hole polarons under the influence of impurity potentials and the distance between impurities. Under an external electric field, the electron or hole polaron can move along the polymer chain with a steady velocity. When the polarons collide with impurities, the velocities of the polarons would be affected by the impurity potentials and the distance between the impurities. 1) Firstly, at a fixed impurity potential strength, the average velocities of the electron and hole polarons as a function of the distance (2-16 times the lattice constant) between impurities have been discussed in polymers. It is found that the average velocities of the electron and hole polarons increase with increasing distance between impurities. It is worth noting that the average velocities of the electron polarons are greater than those of the hole polarons, which results from the fact that the electron and hole polarons have different coulomb interactions with the impurity ions. That is to say, the coulomb repulsion is shown between the electron polarons and impurity ions, which is similar to the potential barriers; while the coulomb attraction appears between the hole polaron and impurity ions, which is similar to a potential well. However, as the distance between the impurity ions becomes large enough, the average speeds of the electron and hole polarons almost remain the same, and show just a few small oscillation. This is due to the different distances between impurity ions which generate the different superposition effects of barrier or potential well on the electron and hole polarons. 2) Next, with a fixed distance between the two impurity ions, we find that with the increase of impurity potential strength, the average velocities of the electron and hole polarons decrease. And the decrease of the average speed of the hole polaron is more obvious. It can be explained as follows: the coulomb attraction interactions between the hole polaron and impurity ions can obviously enhance the localization of the hole polaron. While the coulomb repulsion interactions between electron polaron and impurity ions can only make the electron polaron undergo a small shift in the polymer chain, so that the localization of it is almost unchanged. In view of the average speed of the polaron being closely related to the localization of the polaron, the change of the average speed of the hole polaron is more obvious. The results above may provide some theoretical basis for understanding the conduction properties in doped polymers.
      Corresponding author: Di Bing, dibing@mail.hebtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11074064), the Natural Science Fund of Hebei Province of China (Grant No. A2016205271) and the Educational Commission of Hebei Province of China (Grant Nos. ZD2014052, Z2014034).
    [1]

    Heeger A J 2001 Rev. Mod. Phys. 73 681

    [2]

    Zhu Y X, Chen Z H, Yang Y, Cai P, Chen J W, Li Y Y, Yang W, Peng J B, Cao Y 2015 Org. Electron. 23 193

    [3]

    Mei J G, Diao Y, Appleton A L, Fang L, Bao Z N 2013 J. Am. Chem. Soc. 135 6724

    [4]

    Sun Y, Yan Y D, Hu Z J, Zhao X S, Yan J C 2012 Nat. Mat. 47 44

    [5]

    Braga D, Erickson N C, Renn M J, Holmes R J, Frisbie C D 2012 Adv. Func. Mat. 22 1623

    [6]

    Sun X 1990 The Soliton And Polaron In High Polymers (Chengdu: Sichuan Education press) p135 (in Chinese) [孙鑫 1990 高聚物中的孤子和极化子(成都: 四川教育出版社) 第135页]

    [7]

    Liu W, Zhang M H, Li H H, Wang Y J, Liu D S 2011 Chin. Phys. B 20 037102

    [8]

    Song R, Liu X J, Wang Y D, Di B, An Z 2010 Acta Phys. Sin. 59 3461 (in Chinese) [宋瑞, 刘晓静, 王亚东, 邸冰, 安忠 2010 物理学报 59 3461]

    [9]

    Zhao H X, Zhao H, Chen Y G, Yan Y H 2015 Chin. Phys. Lett. 32 047201

    [10]

    Di B, Wang Y D, Zhang Y L 2013 Acta Phys. Sin. 62 107202 (in Chinese) [邸冰, 王亚东, 张亚琳 2013 物理学报 62 107202]

    [11]

    Yang F J, Xie S J 2014 Chin. Phys. B 23 097306

    [12]

    Yan Y H, An Z, Wu C Q 2004 Eur. Phys. J. B 42 157

    [13]

    Lima M P, e Silva G M 2005 Braz. J. Phys. 35 961

    [14]

    Lima M P, e Silva G M 2006 Int. J. Quantum Chem. 106 2597

    [15]

    da Cunha W F, Ribeiro Junior L A, de Almeida Fonseca A L, Gargano R, e Silva G M 2015 Carbon 91 171

    [16]

    Ribeiro Junior L A, da Cunha W F, de Oliveira Neto P H, Gargano R, e Silva G M 2013 J. Chem. Phys. 139 174903

    [17]

    Li D M, Yuan X J, Ma J S, Liu D S 2011 Chin. Phys. B 20 117203

    [18]

    Wang Y D, Meng Y, Di B, Wang S L, An Z 2010 Chin. Phys. B 19 127105

    [19]

    Di B, Wang Y D, Zhang Y L, An Z 2013 Chin. Phys. B 22 067103

    [20]

    An Z, Li Z J, Liu Y, Li Y C 1997 Z. Phys. B 103 61

    [21]

    Zhang X J, Li G Q, Sun X 2002 Acta Phys. Sin. 51 134 (in Chinese) [张锡娟, 李广起, 孙鑫 2002 物理学报 51 134]

    [22]

    Su W P, Schrieffer J R, Heeger A J 1980 Phys. Rev. B 22 2099

  • [1]

    Heeger A J 2001 Rev. Mod. Phys. 73 681

    [2]

    Zhu Y X, Chen Z H, Yang Y, Cai P, Chen J W, Li Y Y, Yang W, Peng J B, Cao Y 2015 Org. Electron. 23 193

    [3]

    Mei J G, Diao Y, Appleton A L, Fang L, Bao Z N 2013 J. Am. Chem. Soc. 135 6724

    [4]

    Sun Y, Yan Y D, Hu Z J, Zhao X S, Yan J C 2012 Nat. Mat. 47 44

    [5]

    Braga D, Erickson N C, Renn M J, Holmes R J, Frisbie C D 2012 Adv. Func. Mat. 22 1623

    [6]

    Sun X 1990 The Soliton And Polaron In High Polymers (Chengdu: Sichuan Education press) p135 (in Chinese) [孙鑫 1990 高聚物中的孤子和极化子(成都: 四川教育出版社) 第135页]

    [7]

    Liu W, Zhang M H, Li H H, Wang Y J, Liu D S 2011 Chin. Phys. B 20 037102

    [8]

    Song R, Liu X J, Wang Y D, Di B, An Z 2010 Acta Phys. Sin. 59 3461 (in Chinese) [宋瑞, 刘晓静, 王亚东, 邸冰, 安忠 2010 物理学报 59 3461]

    [9]

    Zhao H X, Zhao H, Chen Y G, Yan Y H 2015 Chin. Phys. Lett. 32 047201

    [10]

    Di B, Wang Y D, Zhang Y L 2013 Acta Phys. Sin. 62 107202 (in Chinese) [邸冰, 王亚东, 张亚琳 2013 物理学报 62 107202]

    [11]

    Yang F J, Xie S J 2014 Chin. Phys. B 23 097306

    [12]

    Yan Y H, An Z, Wu C Q 2004 Eur. Phys. J. B 42 157

    [13]

    Lima M P, e Silva G M 2005 Braz. J. Phys. 35 961

    [14]

    Lima M P, e Silva G M 2006 Int. J. Quantum Chem. 106 2597

    [15]

    da Cunha W F, Ribeiro Junior L A, de Almeida Fonseca A L, Gargano R, e Silva G M 2015 Carbon 91 171

    [16]

    Ribeiro Junior L A, da Cunha W F, de Oliveira Neto P H, Gargano R, e Silva G M 2013 J. Chem. Phys. 139 174903

    [17]

    Li D M, Yuan X J, Ma J S, Liu D S 2011 Chin. Phys. B 20 117203

    [18]

    Wang Y D, Meng Y, Di B, Wang S L, An Z 2010 Chin. Phys. B 19 127105

    [19]

    Di B, Wang Y D, Zhang Y L, An Z 2013 Chin. Phys. B 22 067103

    [20]

    An Z, Li Z J, Liu Y, Li Y C 1997 Z. Phys. B 103 61

    [21]

    Zhang X J, Li G Q, Sun X 2002 Acta Phys. Sin. 51 134 (in Chinese) [张锡娟, 李广起, 孙鑫 2002 物理学报 51 134]

    [22]

    Su W P, Schrieffer J R, Heeger A J 1980 Phys. Rev. B 22 2099

  • [1] Wang Lu-Xia, Zhang Da-Cheng, Liu De-Sheng, Han Sheng-Hao, Xie Shi-Jie. Dynamics of polarons and bipolarons in nondegenerate polymers. Acta Physica Sinica, 2003, 52(10): 2547-2552. doi: 10.7498/aps.52.2547
    [2] Gao Kun, Lei Jie, Xie Shi-Jie, Shi Jing. A real space study on the conducting polymer with a ground-state nondegenerate structure. Acta Physica Sinica, 2009, 58(1): 459-464. doi: 10.7498/aps.58.459
    [3] Yuan Xiao-Juan, Yuan Hui-Min, Zhang Cheng-Qiang, Wang Wen-Jing, Yu Yuan-Xun, Liu De-Sheng. Effects of uniform disorder on polaron dynamics in conjugated polymers. Acta Physica Sinica, 2015, 64(6): 067201. doi: 10.7498/aps.64.067201
    [4] Di Bing, Wang Ya-Dong, Zhang Ya-Lin. The effect of interchain coupling on inelastic scattering of oppositely charged polarons. Acta Physica Sinica, 2013, 62(10): 107202. doi: 10.7498/aps.62.107202
    [5] Huang Yong-Xian, Lü Shi-Xiong, Tian Xiu-Bo, Yang Shi-Qin, Fu Ricky, Chu K Paul, Leng Jin-Song, Li Yao. Effect of physical properties of polymer on ion implantation. Acta Physica Sinica, 2012, 61(10): 105203. doi: 10.7498/aps.61.105203
    [6] Wang Wen-Jing, Meng Rui-Xuan, Li Yuan, Gao Kun. Dynamical study on the stimulated absorption and emission in a coujugated polymer. Acta Physica Sinica, 2014, 63(19): 197901. doi: 10.7498/aps.63.197901
    [7] WEI JIAN-HUA, XIE SHI-JIE, MEI LIANG-MO. POLARONS AND BIPOLARONS IN MIXED HALIDE MX COMPOUNDS. Acta Physica Sinica, 2000, 49(11): 2264-2270. doi: 10.7498/aps.49.2264
    [8] Huang Yong-Xian, Leng Jin-Song, Tian Xiu-Bo, Lü Shi-Xiong, Li Yao. The study on adaptability and effect of mesh-inducing for plasma immersion ion implantation on non-conductor polymer. Acta Physica Sinica, 2012, 61(15): 155206. doi: 10.7498/aps.61.155206
    [9] Wang Wen-Jing, Li Chong, Zhang Mao-Mao, Gao Kun. Dynamical study of ultrafast exciton migration in coujugated polymers driven by nonuniform field. Acta Physica Sinica, 2019, 68(17): 177201. doi: 10.7498/aps.68.20190432
    [10] Zhao Feng-Qi, Zhou Bing-Qing. Energy levels of a polaron in wurtzite nitride parabolic quantum well under external electric field. Acta Physica Sinica, 2007, 56(8): 4856-4863. doi: 10.7498/aps.56.4856
  • Citation:
Metrics
  • Abstract views:  372
  • PDF Downloads:  123
  • Cited By: 0
Publishing process
  • Received Date:  27 November 2015
  • Accepted Date:  28 December 2015
  • Published Online:  20 March 2016

Dynamics of polarons in organic conjugated polymers with impurity ions

    Corresponding author: Di Bing, dibing@mail.hebtu.edu.cn
  • 1. Hebei Normal University Affiliated College of Nationalities, Shijiazhuang 050091, China;
  • 2. Shijiazhuang Institute of Technology, Career Academy, Shijiazhuang 050020, China;
  • 3. College of Physics, Hebei Normal University, Shijiazhuang 050024, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 11074064), the Natural Science Fund of Hebei Province of China (Grant No. A2016205271) and the Educational Commission of Hebei Province of China (Grant Nos. ZD2014052, Z2014034).

Abstract: Based on the one-dimensional tight-binding Su-Schrieffer-Heeger (SSH) model, and using the molecular dynamics method, we discuss the dynamics of electron and hole polarons under the influence of impurity potentials and the distance between impurities. Under an external electric field, the electron or hole polaron can move along the polymer chain with a steady velocity. When the polarons collide with impurities, the velocities of the polarons would be affected by the impurity potentials and the distance between the impurities. 1) Firstly, at a fixed impurity potential strength, the average velocities of the electron and hole polarons as a function of the distance (2-16 times the lattice constant) between impurities have been discussed in polymers. It is found that the average velocities of the electron and hole polarons increase with increasing distance between impurities. It is worth noting that the average velocities of the electron polarons are greater than those of the hole polarons, which results from the fact that the electron and hole polarons have different coulomb interactions with the impurity ions. That is to say, the coulomb repulsion is shown between the electron polarons and impurity ions, which is similar to the potential barriers; while the coulomb attraction appears between the hole polaron and impurity ions, which is similar to a potential well. However, as the distance between the impurity ions becomes large enough, the average speeds of the electron and hole polarons almost remain the same, and show just a few small oscillation. This is due to the different distances between impurity ions which generate the different superposition effects of barrier or potential well on the electron and hole polarons. 2) Next, with a fixed distance between the two impurity ions, we find that with the increase of impurity potential strength, the average velocities of the electron and hole polarons decrease. And the decrease of the average speed of the hole polaron is more obvious. It can be explained as follows: the coulomb attraction interactions between the hole polaron and impurity ions can obviously enhance the localization of the hole polaron. While the coulomb repulsion interactions between electron polaron and impurity ions can only make the electron polaron undergo a small shift in the polymer chain, so that the localization of it is almost unchanged. In view of the average speed of the polaron being closely related to the localization of the polaron, the change of the average speed of the hole polaron is more obvious. The results above may provide some theoretical basis for understanding the conduction properties in doped polymers.

Reference (22)

Catalog

    /

    返回文章
    返回