x

## 留言板

General robust stability controller design method for a class of hopf bifurcation systems

## General robust stability controller design method for a class of hopf bifurcation systems

Lu Jin-Bo, Hou Xiao-Rong, Luo Min
PDF

• #### Abstract

For the nonlinear Hopf bifurcation system, the change of bifurcation parameter has an important influence on the state of the system. In order to control the Hopf bifurcations of the nonlinear dynamic system, the parameter values of bifurcation points in the system need to be found out before controller designing. However, due to uncertainties of the system structure and parameters in the nonlinear system, or disturbance, it is difficult to determine the bifurcation point precisely. So it is a good way of designing a robust controller near the bifurcation point. Although, lots of works have discussed the robust control of a Hopf bifurcation in a nonlinear dynamic system, the solutions are not satisfactory and there are still many problems. The controller is always designed for some special system. Its structure is usually complex, not general, and the design process is complicated. And before controller design, the value of bifurcation point must be solved accurately.In this paper, a parametric robust stability controller design method is proposed for a class of polynomial form Hopf bifurcation systems. Using this method, it is not necessary to solve the exact values of the bifurcation parameter, it is only needed to determine the bifurcation parameter range. The designed controller includes a system state polynomial; its structure is general, simple and keeps the equilibrium of the original system unchanged. By using the Hurwitz criterion, the system stability constraints for bifurcation parameter boundaries are obtained at equilibrium, and they are described by algebraic inequalities. Cylindrical algebraic decomposition is applied to calculate the stability region of the controller parameters. And then, in the region, parameters of the robust controller can be calculated to make the dynamic system stable. In this paper, the Lorenz system without disturbance is used as an example to show the designing process of the method, and then the controller of the van der Pol oscillator system with disturbance is designed by this method as an engineering application. Simulations of the two systems are given to demonstrate that the proposed controller designing method can be effectively applied to the robust stability control of the Hopf bifurcation systems.

#### Authors and contacts

###### Corresponding author: Hou Xiao-Rong, houxr@uestc.edu.cn
• Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61374001).

#### References

 [1] Wu Z Q, Sun L M 2011 Acta Phys. Sin. 60 050504 (in Chinese) [吴志强, 孙立明 2011 物理学报 60 050504] [2] Zhu L H, Zhao H Y 2014 Acta Phys. Sin. 63 090203 (in Chinese) [朱霖河, 赵洪涌 2014 物理学报 63 090203] [3] Wang J S, Yuan R X, Gao Z W, Wang D J 2011 Chin. Phys. B 20 090506 [4] Pei Y, Chen G R 2004 Int. J. Bifurcat. Chaos 14 1683 [5] Nguyen L, Hong K 2012 Phys. Lett. A 376 442 [6] Wang F Q, Ma X K 2013 Chin. Phys. B 22 120504 [7] Yfoulis C, Giaouris D, Stergiopoulos F, Ziogou C, Voutetakis S, Papadopoulou S 2015 Control Eng. Pract. 35 67 [8] Zhao H Y, Xie W 2011 Nonlinear Dyn. 63 345 [9] Wu Z, Yu P 2006 IEEE Trans. Automat. Control 51 1019 [10] Mohammadi A, Marvdasht I 2012 Problems of Cybernetics and Informatics (PCI), 2012 IV International Conference Baku, September 12-14, 2012 p1 [11] Kishida M, Braatz R 2014 American Control Conference (ACC), Portland, OR, June 4-6, 2014 p5085 [12] Cao G Y, Hill D J 2010 IET Gener. Transm. Dis. 4 873 [13] Inoue M, Imura J, Kashima K, Aihara K 2015 Analysis and Control of Complex Dynamical Systems 7 3 [14] Hu J, Liu L, Ma D W 2014 J. Korean Phys. Soc. 65 2132 [15] Liang J S, Chen Y S, Leung A Y T 2004 Appl. Math. Mech. 25 263 [16] Yue M, Schlueter R 2005 IEEE Trans. Power Syst. 20 301 [17] Chen D W, Gu H B, Liu H 2010 J. Vib. and Shock 29 30 (in Chinese) [陈大伟, 顾宏斌, 刘晖 2010 振动与冲击 29 30] [18] He C M, Jin L, Chen D G, Geiger R 2007 IEEE Trans. Circ. Syst. 54 964 [19] Liu S, Zhao S S, Wang Z L, Li H B 2015 Chin. Phys. B 24 014501 [20] Li H Y, Che Yan Q, Wang J, Jin Q T, Deng B, Wei X L, Dong F 2012 The 10th World Congress on Intelligent Control and Automation (WCICA) Beijing, July 6-8, 2012 p4953 [21] Yang T B, Chen X 2008 Proceedings of the 47th IEEE Conference on Decision and Control(CDC) Cancun, Mexico, December 9-11, 2008 p4103 [22] LaValle S M 2006 Planning Algorithms (Cambridge: Cambridge University Press) pp 280-290 [23] Gandy S, Kanno M, Anai H, Yokoyama K 2011 Math. Comput. Sci. 5 209 [24] England M, Bradford R, Chen C, Davenport J H, Maza M M, Wilson D 2014 Intellig. Comput. Math. 8543 45

#### Cited By

•  [1] Wu Z Q, Sun L M 2011 Acta Phys. Sin. 60 050504 (in Chinese) [吴志强, 孙立明 2011 物理学报 60 050504] [2] Zhu L H, Zhao H Y 2014 Acta Phys. Sin. 63 090203 (in Chinese) [朱霖河, 赵洪涌 2014 物理学报 63 090203] [3] Wang J S, Yuan R X, Gao Z W, Wang D J 2011 Chin. Phys. B 20 090506 [4] Pei Y, Chen G R 2004 Int. J. Bifurcat. Chaos 14 1683 [5] Nguyen L, Hong K 2012 Phys. Lett. A 376 442 [6] Wang F Q, Ma X K 2013 Chin. Phys. B 22 120504 [7] Yfoulis C, Giaouris D, Stergiopoulos F, Ziogou C, Voutetakis S, Papadopoulou S 2015 Control Eng. Pract. 35 67 [8] Zhao H Y, Xie W 2011 Nonlinear Dyn. 63 345 [9] Wu Z, Yu P 2006 IEEE Trans. Automat. Control 51 1019 [10] Mohammadi A, Marvdasht I 2012 Problems of Cybernetics and Informatics (PCI), 2012 IV International Conference Baku, September 12-14, 2012 p1 [11] Kishida M, Braatz R 2014 American Control Conference (ACC), Portland, OR, June 4-6, 2014 p5085 [12] Cao G Y, Hill D J 2010 IET Gener. Transm. Dis. 4 873 [13] Inoue M, Imura J, Kashima K, Aihara K 2015 Analysis and Control of Complex Dynamical Systems 7 3 [14] Hu J, Liu L, Ma D W 2014 J. Korean Phys. Soc. 65 2132 [15] Liang J S, Chen Y S, Leung A Y T 2004 Appl. Math. Mech. 25 263 [16] Yue M, Schlueter R 2005 IEEE Trans. Power Syst. 20 301 [17] Chen D W, Gu H B, Liu H 2010 J. Vib. and Shock 29 30 (in Chinese) [陈大伟, 顾宏斌, 刘晖 2010 振动与冲击 29 30] [18] He C M, Jin L, Chen D G, Geiger R 2007 IEEE Trans. Circ. Syst. 54 964 [19] Liu S, Zhao S S, Wang Z L, Li H B 2015 Chin. Phys. B 24 014501 [20] Li H Y, Che Yan Q, Wang J, Jin Q T, Deng B, Wei X L, Dong F 2012 The 10th World Congress on Intelligent Control and Automation (WCICA) Beijing, July 6-8, 2012 p4953 [21] Yang T B, Chen X 2008 Proceedings of the 47th IEEE Conference on Decision and Control(CDC) Cancun, Mexico, December 9-11, 2008 p4103 [22] LaValle S M 2006 Planning Algorithms (Cambridge: Cambridge University Press) pp 280-290 [23] Gandy S, Kanno M, Anai H, Yokoyama K 2011 Math. Comput. Sci. 5 209 [24] England M, Bradford R, Chen C, Davenport J H, Maza M M, Wilson D 2014 Intellig. Comput. Math. 8543 45
•  [1] Zhang Li-Sen, Cai Li, Feng Chao-Wen. Hopf bifurcation and chaotification of Josephson junction with linear delayed feedback. Acta Physica Sinica, 2011, 60(6): 060306. doi: 10.7498/aps.60.060306 [2] Cui Yan, Liu Su-Hua, Ge Xiao-Ling. Amplitude control of limit cycle from Hopf bifurcation in the Langford system. Acta Physica Sinica, 2012, 61(10): 100202. doi: 10.7498/aps.61.100202 [3] Ma Wei, Wang Ming-Yu, Nie Hai-Long. Control of Hopf bifurcation in the one-cycle controlled Boost converter and its experimental implementation. Acta Physica Sinica, 2011, 60(10): 100202. doi: 10.7498/aps.60.100202 [4] Wu Zhi-Qiang, Sun Li-Ming. Hopf bifurcation control of the Rössler system based on Washout filter controller. Acta Physica Sinica, 2011, 60(5): 050504. doi: 10.7498/aps.60.050504 [5] Tang Jia-Shi, Liu Su-Hua. Anti-control of Hopf bifurcation at zero equilibrium of 4D Qi system. Acta Physica Sinica, 2008, 57(10): 6162-6168. doi: 10.7498/aps.57.6162 [6] Liu Bin, Shi Pei-Ming, Liu Shuang. Nonlinear feedback control of Hopf bifurcation in a relative rotation dynamical system. Acta Physica Sinica, 2009, 58(7): 4383-4389. doi: 10.7498/aps.58.4383 [7] Liu Hao-Ran, Wen Yan, Liu Shuang, Liu Bin. Hopf bifurcation control in a coupled nonlinear relative rotation dynamical system. Acta Physica Sinica, 2010, 59(8): 5223-5228. doi: 10.7498/aps.59.5223 [8] Zhang Ling-Mei, Zhang Jian-Wen, Wu Run-Heng. Anti-control of Hopf bifurcation in the new chaotic system with piecewise system and exponential system. Acta Physica Sinica, 2014, 63(16): 160505. doi: 10.7498/aps.63.160505 [9] Wang Zuo-Lei. Stability and Hopf bifurcation of the simplified Lang-Kobayashi equation. Acta Physica Sinica, 2008, 57(8): 4771-4776. doi: 10.7498/aps.57.4771 [10] Liu Bin, Zhang Ye-Kuan, Liu Shuang, Wen Yan. Hopf bifurcation and stability of periodic solutions in a nonlinear relative rotation dynamical system with time delay. Acta Physica Sinica, 2010, 59(1): 38-43. doi: 10.7498/aps.59.38 [11] Chen Ling, Zhao Hong-Yong, Yu Xiao-Hong. Bifurcation and control of a class of inertial neuron networks. Acta Physica Sinica, 2011, 60(7): 070202. doi: 10.7498/aps.60.070202 [12] Zhu Lin-He, Zhao Hong-Yong. Stability and bifurcation control in inertial neuron networks with delays. Acta Physica Sinica, 2014, 63(9): 090203. doi: 10.7498/aps.63.090203 [13] Zhang Li-Ping, Wang Hui-Nan, Xu Min. Hybrid control of bifurcation in a predator-prey system with three delays. Acta Physica Sinica, 2011, 60(1): 010506. doi: 10.7498/aps.60.010506 [14] Yue Ping, Zhang Qiang, Li Yao-Hui, Wang Run-Yuan, Wang Sheng, Sun Xu-Ying. Bulk transfer coefficients of momentum and sensible heat over semiarid grassland surface and their parameterization scheme. Acta Physica Sinica, 2013, 62(9): 099202. doi: 10.7498/aps.62.099202 [15] Zhang Wu-Fan, Zhao Qiang. Hopf bifurcation and chaos in the solar-forced El Niño /Southern Oscillation recharge oscillator model. Acta Physica Sinica, 2014, 63(21): 210201. doi: 10.7498/aps.63.210201 [16] Li Xiao-Jing, Chen Xuan-Qing, Yan Jing. Hopf bifurcation and the problem of periodic solutions in a recharge-discharge oscillator model for El Niño and southern oscillation with time delay. Acta Physica Sinica, 2013, 62(16): 160202. doi: 10.7498/aps.62.160202 [17] Ma Shao-Juan. Hopf bifurcation in a kind of stochastic van der Pol system. Acta Physica Sinica, 2011, 60(1): 010502. doi: 10.7498/aps.60.010502 [18] Bi Chuang, Zhang Qian, Xiang Yong, Wang Jing-Mei. Bifurcation and attractor of two-dimensional sinusoidal discrete map. Acta Physica Sinica, 2013, 62(24): 240503. doi: 10.7498/aps.62.240503 [19] Chen Zeng-Qiang, Yuan Zhu-Zhi, Zhang Qing, Wang Jie-Zhi. The bifurcation analysis of a conjugate Chen chaotic system and the hyperchaos generation based on the system. Acta Physica Sinica, 2008, 57(4): 2092-2099. doi: 10.7498/aps.57.2092 [20] Li Shao-Long, Zhang Zheng-Di, Wu Tian-Yi, Bi Qin-Sheng. Oscillations and non-smooth bifurcations in a generalized BVP circuit system. Acta Physica Sinica, 2012, 61(6): 060504. doi: 10.7498/aps.61.060504
•  Citation:
##### Metrics
• Abstract views:  758
• Cited By: 0
##### Publishing process
• Received Date:  24 October 2015
• Accepted Date:  10 December 2015
• Published Online:  05 March 2016

## General robust stability controller design method for a class of hopf bifurcation systems

###### Corresponding author: Hou Xiao-Rong, houxr@uestc.edu.cn;
• 1. School of Energy Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 61374001).

Abstract: For the nonlinear Hopf bifurcation system, the change of bifurcation parameter has an important influence on the state of the system. In order to control the Hopf bifurcations of the nonlinear dynamic system, the parameter values of bifurcation points in the system need to be found out before controller designing. However, due to uncertainties of the system structure and parameters in the nonlinear system, or disturbance, it is difficult to determine the bifurcation point precisely. So it is a good way of designing a robust controller near the bifurcation point. Although, lots of works have discussed the robust control of a Hopf bifurcation in a nonlinear dynamic system, the solutions are not satisfactory and there are still many problems. The controller is always designed for some special system. Its structure is usually complex, not general, and the design process is complicated. And before controller design, the value of bifurcation point must be solved accurately.In this paper, a parametric robust stability controller design method is proposed for a class of polynomial form Hopf bifurcation systems. Using this method, it is not necessary to solve the exact values of the bifurcation parameter, it is only needed to determine the bifurcation parameter range. The designed controller includes a system state polynomial; its structure is general, simple and keeps the equilibrium of the original system unchanged. By using the Hurwitz criterion, the system stability constraints for bifurcation parameter boundaries are obtained at equilibrium, and they are described by algebraic inequalities. Cylindrical algebraic decomposition is applied to calculate the stability region of the controller parameters. And then, in the region, parameters of the robust controller can be calculated to make the dynamic system stable. In this paper, the Lorenz system without disturbance is used as an example to show the designing process of the method, and then the controller of the van der Pol oscillator system with disturbance is designed by this method as an engineering application. Simulations of the two systems are given to demonstrate that the proposed controller designing method can be effectively applied to the robust stability control of the Hopf bifurcation systems.

Reference (24)

/