Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Multiple topological phases in phononic crystals

Chen Ze-Guo Wu Ying

Multiple topological phases in phononic crystals

Chen Ze-Guo, Wu Ying
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • We report a new topological phononic crystal in a ring-waveguide acoustic system. In the previous reports on topological phononic crystals, there are two types of topological phases:quantum Hall phase and quantum spin Hall phase. A key point in achieving quantum Hall insulator is to break the time-reversal (TR) symmetry, and for quantum spin Hall insulator, the construction of pseudo-spin is necessary. We build such pseudo-spin states under particular crystalline symmetry (C6v) and then break the degeneracy of the pseudo-spin states by introducing airflow to the ring. We study the topology evolution by changing both the geometric parameters of the unit cell and the strength of the applied airflow. We find that the system exhibits three phases:quantum spin Hall phase, conventional insulator phase and a new quantum anomalous Hall phase.The quantum anomalous Hall phase is first observed in phononics and cannot be simply classified by the Chern number or Z2 index since it results from TR-broken quantum spin Hall phase. We develop a tight-binding model to capture the essential physics of the topological phase transition. The analytical calculation based on the tight-binding model shows that the spin Chern number is a topological invariant to classify the bandgap. The quantum anomalous Hall insulator has a spin Chern number C±=(1,0) indicating the edge state is pseudo-spin orientation dependent and robust against TR-broken impurities.We also perform finite-element numerical simulations to verify the topological differences of the bandgaps. At the interface between a conventional insulator and a quantum anomalous Hall insulator, pseudo-spin dependent one-way propagation interface states are clearly observed, which are strikingly deferent from chiral edge states resulting from quantum Hall insulator and pairs of helical edge states resulting from quantum spin Hall insulator. Moreover, our pseudo-spin dependent edge state is robust against TR-broken impurities, which also sheds lights on spintronic devices.
      Corresponding author: Wu Ying, ying.wu@kaust.edu.sa
    • Funds: Project supported by King Abdullah University of Science and Technology Baseline Research Fund (Grant No. BAS/1/1626-01-01).
    [1]

    John S 1987 Phys. Rev. Lett. 58 2486

    [2]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [3]

    Klitzing K V, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494

    [4]

    Thouless D J, Kohmoto M, Nightingale M P, den Nijs M 1982 Phys. Rev. Lett. 49 405

    [5]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801

    [6]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757

    [7]

    König M, Wiedmann S, Brne C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766

    [8]

    Qi X L, Wu Y S, Zhang S C 2006 Phys. Rev. B 74 085308

    [9]

    Prodan E 2009 Phys. Rev. B 80 125327

    [10]

    Kitagawa T, Berg E, Rudner M, Demler E 2010 Phys. Rev. B 82 235114

    [11]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045

    [12]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057

    [13]

    Moore J E 2010 Nature 464 194

    [14]

    Haldane F D M, Raghu S 2008 Phys. Rev. Lett. 100 013904

    [15]

    Wang Z, Chong Y D, Joannopoulos J D, Soljačić M 2008 Phys. Rev. Lett. 100 013905

    [16]

    Khanikaev A B, Hossein Mousavi S, Tse W K, Kargarian M, MacDonald A H, Shvets G 2013 Nat. Mater. 12 233

    [17]

    Rechtsman M C, Zeuner J M, Plotnik Y, Lumer Y,Podolsky D, Dreisow F, Nolte S, Segev M, Szameit A 2013 Nature 496 196

    [18]

    Lu L, Joannopoulos J D, Soljacic M 2014 Nat. Photon. 8 821

    [19]

    Yang Z, Gao F, Shi X, Lin X, Gao Z, Chong Y, Zhang B 2015 Phys. Rev. Lett. 114 114301

    [20]

    Xiao M, Ma G, Yang Z, Sheng P, Zhang Z Q, Chan C T 2015 Nat. Phys. 11 240

    [21]

    Lu J, Qiu C, Ke M, Liu Z 2016 Phys. Rev. Lett. 116 093901

    [22]

    Fleury R, Sounas D L, Sieck C F, Haberman M R, Alù A 2014 Science 343 516

    [23]

    Wu L H, Hu X 2015 Phys. Rev. Lett. 114 223901

    [24]

    He C, Sun X C, Liu X P, Lu M H, Chen Y, Feng L, Chen Y F 2016 Proc. Natl. Acad. Sci. USA 113 4924

    [25]

    Zhang Z, Wei Q, Cheng Y, Zhang T, Wu D, Liu X 2017 Phys. Rev. Lett. 118 084303

    [26]

    Xu L, Wang H X, Xu Y D, Chen H Y, Jiang J H 2016 Opt. Express 24 18059

    [27]

    He C, Ni X, Ge H, Sun X C, Chen Y B, Lu M H, Liu X P, Chen Y F 2016 Nat. Phys. 12 1124

    [28]

    Ni X, He C, Sun X C, Liu X P, Lu M H, Feng L, Chen Y F 2015 New J. Phys. 17 053016

    [29]

    Chen Z G, Wu Y 2016 Phys. Rev. Appl. 5 054021

    [30]

    Haldane F D M 1988 Phys. Rev. Lett. 61 2015

    [31]

    Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2008 Phys. Rev. Lett. 101 146802

    [32]

    Li H, Sheng L, Shen R, Shao L B, Wang B, Sheng D N, Xing D Y 2013 Phys. Rev. Lett. 110 266802

    [33]

    Chen Z G, Ni X, Wu Y, He C, Sun X C, Zheng L Y, Lu M H, Chen Y F 2014 Sci. Rep. 4 4613

    [34]

    Alexandradinata A, Fang C, Gilbert M J, Bernevig B A 2014 Phys. Rev. Lett. 113 116403

    [35]

    Liu C X, Zhang R X, van Leeuwen B K 2014 Phys. Rev. B 90 085304

    [36]

    Sakoda K 2012 Opt. Express 20 3898

    [37]

    Liu C X, Qi X L, Zhang H, Dai X, Fang Z, Zhang S C 2010 Phys. Rev. B 82 045122

    [38]

    Chen Z G, Mei J, Sun X C, Zhang X, Zhao J, Wu Y 2017 Phys. Rev. A 95 043827

  • [1]

    John S 1987 Phys. Rev. Lett. 58 2486

    [2]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [3]

    Klitzing K V, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494

    [4]

    Thouless D J, Kohmoto M, Nightingale M P, den Nijs M 1982 Phys. Rev. Lett. 49 405

    [5]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801

    [6]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757

    [7]

    König M, Wiedmann S, Brne C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766

    [8]

    Qi X L, Wu Y S, Zhang S C 2006 Phys. Rev. B 74 085308

    [9]

    Prodan E 2009 Phys. Rev. B 80 125327

    [10]

    Kitagawa T, Berg E, Rudner M, Demler E 2010 Phys. Rev. B 82 235114

    [11]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045

    [12]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057

    [13]

    Moore J E 2010 Nature 464 194

    [14]

    Haldane F D M, Raghu S 2008 Phys. Rev. Lett. 100 013904

    [15]

    Wang Z, Chong Y D, Joannopoulos J D, Soljačić M 2008 Phys. Rev. Lett. 100 013905

    [16]

    Khanikaev A B, Hossein Mousavi S, Tse W K, Kargarian M, MacDonald A H, Shvets G 2013 Nat. Mater. 12 233

    [17]

    Rechtsman M C, Zeuner J M, Plotnik Y, Lumer Y,Podolsky D, Dreisow F, Nolte S, Segev M, Szameit A 2013 Nature 496 196

    [18]

    Lu L, Joannopoulos J D, Soljacic M 2014 Nat. Photon. 8 821

    [19]

    Yang Z, Gao F, Shi X, Lin X, Gao Z, Chong Y, Zhang B 2015 Phys. Rev. Lett. 114 114301

    [20]

    Xiao M, Ma G, Yang Z, Sheng P, Zhang Z Q, Chan C T 2015 Nat. Phys. 11 240

    [21]

    Lu J, Qiu C, Ke M, Liu Z 2016 Phys. Rev. Lett. 116 093901

    [22]

    Fleury R, Sounas D L, Sieck C F, Haberman M R, Alù A 2014 Science 343 516

    [23]

    Wu L H, Hu X 2015 Phys. Rev. Lett. 114 223901

    [24]

    He C, Sun X C, Liu X P, Lu M H, Chen Y, Feng L, Chen Y F 2016 Proc. Natl. Acad. Sci. USA 113 4924

    [25]

    Zhang Z, Wei Q, Cheng Y, Zhang T, Wu D, Liu X 2017 Phys. Rev. Lett. 118 084303

    [26]

    Xu L, Wang H X, Xu Y D, Chen H Y, Jiang J H 2016 Opt. Express 24 18059

    [27]

    He C, Ni X, Ge H, Sun X C, Chen Y B, Lu M H, Liu X P, Chen Y F 2016 Nat. Phys. 12 1124

    [28]

    Ni X, He C, Sun X C, Liu X P, Lu M H, Feng L, Chen Y F 2015 New J. Phys. 17 053016

    [29]

    Chen Z G, Wu Y 2016 Phys. Rev. Appl. 5 054021

    [30]

    Haldane F D M 1988 Phys. Rev. Lett. 61 2015

    [31]

    Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2008 Phys. Rev. Lett. 101 146802

    [32]

    Li H, Sheng L, Shen R, Shao L B, Wang B, Sheng D N, Xing D Y 2013 Phys. Rev. Lett. 110 266802

    [33]

    Chen Z G, Ni X, Wu Y, He C, Sun X C, Zheng L Y, Lu M H, Chen Y F 2014 Sci. Rep. 4 4613

    [34]

    Alexandradinata A, Fang C, Gilbert M J, Bernevig B A 2014 Phys. Rev. Lett. 113 116403

    [35]

    Liu C X, Zhang R X, van Leeuwen B K 2014 Phys. Rev. B 90 085304

    [36]

    Sakoda K 2012 Opt. Express 20 3898

    [37]

    Liu C X, Qi X L, Zhang H, Dai X, Fang Z, Zhang S C 2010 Phys. Rev. B 82 045122

    [38]

    Chen Z G, Mei J, Sun X C, Zhang X, Zhao J, Wu Y 2017 Phys. Rev. A 95 043827

  • [1] Wang Zi, Zhang Dan-Mei, Ren Jie. Topological and non-reciprocal phenomena in elastic waves and heat transport of phononic systems. Acta Physica Sinica, 2019, 68(22): 220302. doi: 10.7498/aps.68.20191463
    [2] Jia Ding, Ge Yong, Yuan Shou-Qi, Sun Hong-Xiang. Dual-band acoustic topological insulator based on honeycomb lattice sonic crystal. Acta Physica Sinica, 2019, 68(22): 224301. doi: 10.7498/aps.68.20190951
    [3] Geng Zhi-Guo, Peng Yu-Gui, Shen Ya-Xi, Zhao De-Gang, Zhu Xue-Feng. Topological acoustic transports in chiral sonic crystals. Acta Physica Sinica, 2019, 68(22): 227802. doi: 10.7498/aps.68.20191007
    [4] Wang Jian, Wu Shi-Qiao, Mei Jun. Topological phase transitions caused by a simple rotational operation in two-dimensional acoustic crystals. Acta Physica Sinica, 2017, 66(22): 224301. doi: 10.7498/aps.66.224301
    [5] Zheng Zhou-Fu, Yin Jian-Fei, Wen Ji-Hong, Yu Dian-Long. Topologically protected edge states of elastic waves in phononic crystal plates. Acta Physica Sinica, 2020, 69(15): 156201. doi: 10.7498/aps.69.20200542
    [6] Wang Jing. Chiral Majorana fermion. Acta Physica Sinica, 2020, 69(11): 117302. doi: 10.7498/aps.69.20200534
    [7] Jia Zi-Yuan, Yang Yu-Ting, Ji Li-Yu, Hang Zhi-Hong. Deterministic interface states in photonic crystal with graphene-allotrope-like complex unit cells. Acta Physica Sinica, 2017, 66(22): 227802. doi: 10.7498/aps.66.227802
    [8] Lü Xin-Yu, Li Zhi-Qiang. Topological properties of graphene moiré superlattice systems and recent optical studies. Acta Physica Sinica, 2019, 68(22): 220303. doi: 10.7498/aps.68.20191317
    [9] Sun Xiao-Chen, He Cheng, Lu Ming-Hui, Chen Yan-Feng. Topological properties of artificial bandgap materials. Acta Physica Sinica, 2017, 66(22): 224203. doi: 10.7498/aps.66.224203
    [10] Kong Ling-Yao. Research progress on topological properties and micro-magnetic simulation study in dynamics of magnetic skyrmions. Acta Physica Sinica, 2018, 67(13): 137506. doi: 10.7498/aps.67.20180235
    [11] Li Xiao-Chun, Yi Xiu-Ying, Xiao Qing-Wu, Liang Hong-Yu. Defect states in three-component phononic crystal. Acta Physica Sinica, 2006, 55(5): 2300-2305. doi: 10.7498/aps.55.2300
    [12] Cao Hui-Xian, Mei Jun. Semi-Dirac points in two-dimensional phononic crystals. Acta Physica Sinica, 2015, 64(19): 194301. doi: 10.7498/aps.64.194301
    [13] Tian Yuan, Ge Hao, Lu Ming-Hui, Chen Yan-Feng. Research advances in acoustic metamaterials. Acta Physica Sinica, 2019, 68(19): 194301. doi: 10.7498/aps.68.20190850
    [14] Zhao Fang, Yuan Li-Bo. Characteristics of the band structure in two-dimensional phononic crystals with complex lattices. Acta Physica Sinica, 2005, 54(10): 4511-4516. doi: 10.7498/aps.54.4511
    [15] Cai Li, Han Xiao-Yun. Study of the band-structure and the uncoupled modes in two-dimensional phononic crystals with the multiple-scattering theory. Acta Physica Sinica, 2006, 55(11): 5866-5871. doi: 10.7498/aps.55.5866
    [16] Wang Wen-Gang, Liu Zheng-You, Zhao De-Gang, Ke Man-Zhu. Resonant tunneling of acoustic waves in 1D phononic crystal. Acta Physica Sinica, 2006, 55(9): 4744-4747. doi: 10.7498/aps.55.4744
    [17] Chen Sheng-Bing, Han Xiao-Yun, Yu Dian-Long, Wen Ji-Hong. Influences of different types of piezoelectric shunting circuits on band gaps of phononic beam. Acta Physica Sinica, 2010, 59(1): 387-392. doi: 10.7498/aps.59.387
    [18] Gao Guo-Qin, Ma Shou-Lin, Jin Feng, Kim Tong-Beum, Lu Tian-Jian. Acoustic band gaps in finite-sized two-dimensional solid/fluid phononic crystals. Acta Physica Sinica, 2010, 59(1): 393-400. doi: 10.7498/aps.59.393
    [19] Li Xiao-Chun, Gao Jun-Li, Liu Shao-E, Zhou Ke-Chao, Huang Bo-Yun. Disorder effect on the focus image of phononic crystal panel with negative refraction. Acta Physica Sinica, 2010, 59(1): 376-380. doi: 10.7498/aps.59.376
    [20] Li Xiao-Chun, Gao Jun-Li, Liu Shao-E, Zhou Ke-Chao, Huang Bo-Yun. Scattering channel in focus imaging of two-dimensional phononic crystal panel. Acta Physica Sinica, 2010, 59(1): 381-386. doi: 10.7498/aps.59.381
  • Citation:
Metrics
  • Abstract views:  1622
  • PDF Downloads:  416
  • Cited By: 0
Publishing process
  • Received Date:  31 July 2017
  • Accepted Date:  27 October 2017
  • Published Online:  05 November 2017

Multiple topological phases in phononic crystals

    Corresponding author: Wu Ying, ying.wu@kaust.edu.sa
  • 1. King Abdullah University of Science and Technology(KAUST), Division of Computer, Electrical and Mathematial Science and Engineering(CEMSE) Thuwal, 23955-6900, Saudi Arabia
Fund Project:  Project supported by King Abdullah University of Science and Technology Baseline Research Fund (Grant No. BAS/1/1626-01-01).

Abstract: We report a new topological phononic crystal in a ring-waveguide acoustic system. In the previous reports on topological phononic crystals, there are two types of topological phases:quantum Hall phase and quantum spin Hall phase. A key point in achieving quantum Hall insulator is to break the time-reversal (TR) symmetry, and for quantum spin Hall insulator, the construction of pseudo-spin is necessary. We build such pseudo-spin states under particular crystalline symmetry (C6v) and then break the degeneracy of the pseudo-spin states by introducing airflow to the ring. We study the topology evolution by changing both the geometric parameters of the unit cell and the strength of the applied airflow. We find that the system exhibits three phases:quantum spin Hall phase, conventional insulator phase and a new quantum anomalous Hall phase.The quantum anomalous Hall phase is first observed in phononics and cannot be simply classified by the Chern number or Z2 index since it results from TR-broken quantum spin Hall phase. We develop a tight-binding model to capture the essential physics of the topological phase transition. The analytical calculation based on the tight-binding model shows that the spin Chern number is a topological invariant to classify the bandgap. The quantum anomalous Hall insulator has a spin Chern number C±=(1,0) indicating the edge state is pseudo-spin orientation dependent and robust against TR-broken impurities.We also perform finite-element numerical simulations to verify the topological differences of the bandgaps. At the interface between a conventional insulator and a quantum anomalous Hall insulator, pseudo-spin dependent one-way propagation interface states are clearly observed, which are strikingly deferent from chiral edge states resulting from quantum Hall insulator and pairs of helical edge states resulting from quantum spin Hall insulator. Moreover, our pseudo-spin dependent edge state is robust against TR-broken impurities, which also sheds lights on spintronic devices.

Reference (38)

Catalog

    /

    返回文章
    返回