Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical and experimental research on influence of cavity frequency difference in birefringent laser feedback system

Niu Hai-Sha Zhu Lian-Qing Song Jian-Jun Dong Ming-Li Lou Xiao-Ping

Theoretical and experimental research on influence of cavity frequency difference in birefringent laser feedback system

Niu Hai-Sha, Zhu Lian-Qing, Song Jian-Jun, Dong Ming-Li, Lou Xiao-Ping
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The internal stress of glass material directly affects the processing quality of glass components and the service life of optical components. It is an important factor that relates to the overall system performance, safety, and reliability. Aerospace, precision optical systems, precision machining and other areas generally highly value the stress measurements of glass components. For example, the internal stress in the medium-glass material of precision imaging system will lead to the degradation of optical performance and reduce the image quality; the stress in the glass material used as the gain medium of high-power solid-state lasers not only directly affects the polarization state of the output light, but also shortens the service life of the laser; the stress concentration in the load-bearing glass of aircraft windshields, building glass curtain walls, etc., will cause serious accidents such as popping due to the reduction of glass mechanical properties. Therefore, the high sensitivity and large measurement range of stress detection technology has become a current research hotspot. Stress measurement techniques based on the birefringent external cavity laser feedback effect has received widespread attention due to its advanced and novel measurement principle. It is generally accepted in the traditional theory that the output phase of the laser in a feedback system is only determined by the phase retardation of birefringent element in an external cavity, and the measurement error is induced by the non-linear movement of external mirror. In this paper, the orthogonally polarized laser principle and the three-cavity equivalent model are combined to explain the influence of cavity frequency difference on the output of laser in feedback system. The frequency difference caused by the birefringence of the laser cavity is measured by comparing the intervals between adjacent longitudinal modes, and the frequency tuning feedback experiment is carried out. Theoretical analysis and experimental results show that the output phase of the laser is determined by the phase retardation of the external cavity, the frequency difference of the internal cavity, and the length of the external cavity. This conclusion is also confirmed by the measurement of the standard quarter wave plate. For a feedback system with an internal cavity frequency difference of 5 MHz and external cavity length of 150 mm, the phase difference induced by internal cavity frequency difference is about 0.573. The laser can output a single longitudinal mode below 40 MHz of the internal cavity frequency difference, and the length of the external cavity is generally larger than 150 mm when the actual system is designed, so the phase difference introduced by these two parameters cannot be ignored and must be calibrated. This study summarizes the phase characteristics of the orthogonally polarized laser under the joint of anisotropy feedback cavity, supplements the physical content of the laser feedback, and has great significance for accurate laser measurement of stress-birefringence, displacement, and distance.
      Corresponding author: Zhu Lian-Qing, zhulianqing@sina.com
    • Funds: Project supported by Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT_16R07).
    [1]

    Findlay S J, Harrison N D 2002 Mater. Today 5 18

    [2]

    Tomozawa M, Lezzi P J, Hepburn R W, Blanchet T A, Cherniak D J 2012 J. Non-Cryst. Solids 358 2650

    [3]

    He D B, Kang S, Zhang L Y, Chen L, Ding Y J, Yin Q W, Hu L L 2017 High Power Laser Sci. Eng. 5 e1

    [4]

    Rawer R, Stork W, Spraul C W, Lingenfelder C 2005 J. Cataract Refr. Surg. 31 1618

    [5]

    Zhu S S, Zhang S L, Liu W X, Niu H S 2014 Acta Phys. Sin. 63 064201 (in Chinese) [朱守深, 张书练, 刘维新, 牛海莎 2014 物理学报 63 064201]

    [6]

    Okoro C, Levine L E, Xu R 2014 IEEE Trans. Electron Dev. 61 2473

    [7]

    Vourna P, Hervoches C, Vrna M 2015 IEEE Trans. Magn. 51 6200104

    [8]

    Chupakhin S, Kashaev N, Huber N 2016 J. Strain Anal. Eng. Des. 51 572

    [9]

    Montalto L, Paone N, Rinaldi D, Scalise L 2015 Opt. Eng. 54 081210

    [10]

    Nagib N N, Bahrawi M S, Ismail L Z, Othman M H, Abdallah A W 2015 Opt. Laser Technol. 69 77

    [11]

    He J S, Zhang M, Zou J J, Pan H Q, Qi W J, Li P 2017 Acta Phys. Sin. 66 216102 (in Chinese) [何菊生, 张萌, 邹继军, 潘华清, 齐维靖, 李平 2017 物理学报 66 216102]

    [12]

    Zhu K Y, Guo B, Lu Y Y, et al. 2017 Optica 4 729

    [13]

    Yang S, Zhang S 1988 Opt. Commun. 68 55

    [14]

    Wang W M, Boyle W J O, Granttan K T V, Palmer A 1993 Appl. Opt. 32 1551

    [15]

    Zhang P, Tan Y D, Liu N, et al. 2013 Opt. Lett. 38 4296

    [16]

    Zhang S H, Zhang S L, Sun L Q, et al. 2016 IEEE Photon. Technol. Lett. 28 1593

    [17]

    Tan Y D, Zhang S L, Zhang S, et al. 2013 Sci. Rep. 3 2912

    [18]

    Li J, Tan Y D, Zhang S L 2015 Opt. Lett. 40 3615

    [19]

    Liu W X, Liu M, Zhang S 2008 Appl. Opt. 47 5562

    [20]

    Niu H S, Niu Y X, Liu N, Liu W W, Wang C L 2015 Acta Phys. Sin. 64 084208 (in Chinese) [牛海莎, 牛燕雄, 刘宁, 刘雯雯, 王彩丽 2015 物理学报 64 084208]

    [21]

    Cen Z F, Li X T 2010 Acta Phys. Sin. 59 5784 (in Chinese) [岑兆丰, 李晓彤 2010 物理学报 59 5784]

    [22]

    Huang K, Li S, Ma Y, Tian X, Zhou H, Zhang Z Y 2018 Acta Phys. Sin. 67 064205 (in Chinese) [黄科, 李松, 马跃, 田昕, 周辉, 张智宇 2018 物理学报 67 064205]

  • [1]

    Findlay S J, Harrison N D 2002 Mater. Today 5 18

    [2]

    Tomozawa M, Lezzi P J, Hepburn R W, Blanchet T A, Cherniak D J 2012 J. Non-Cryst. Solids 358 2650

    [3]

    He D B, Kang S, Zhang L Y, Chen L, Ding Y J, Yin Q W, Hu L L 2017 High Power Laser Sci. Eng. 5 e1

    [4]

    Rawer R, Stork W, Spraul C W, Lingenfelder C 2005 J. Cataract Refr. Surg. 31 1618

    [5]

    Zhu S S, Zhang S L, Liu W X, Niu H S 2014 Acta Phys. Sin. 63 064201 (in Chinese) [朱守深, 张书练, 刘维新, 牛海莎 2014 物理学报 63 064201]

    [6]

    Okoro C, Levine L E, Xu R 2014 IEEE Trans. Electron Dev. 61 2473

    [7]

    Vourna P, Hervoches C, Vrna M 2015 IEEE Trans. Magn. 51 6200104

    [8]

    Chupakhin S, Kashaev N, Huber N 2016 J. Strain Anal. Eng. Des. 51 572

    [9]

    Montalto L, Paone N, Rinaldi D, Scalise L 2015 Opt. Eng. 54 081210

    [10]

    Nagib N N, Bahrawi M S, Ismail L Z, Othman M H, Abdallah A W 2015 Opt. Laser Technol. 69 77

    [11]

    He J S, Zhang M, Zou J J, Pan H Q, Qi W J, Li P 2017 Acta Phys. Sin. 66 216102 (in Chinese) [何菊生, 张萌, 邹继军, 潘华清, 齐维靖, 李平 2017 物理学报 66 216102]

    [12]

    Zhu K Y, Guo B, Lu Y Y, et al. 2017 Optica 4 729

    [13]

    Yang S, Zhang S 1988 Opt. Commun. 68 55

    [14]

    Wang W M, Boyle W J O, Granttan K T V, Palmer A 1993 Appl. Opt. 32 1551

    [15]

    Zhang P, Tan Y D, Liu N, et al. 2013 Opt. Lett. 38 4296

    [16]

    Zhang S H, Zhang S L, Sun L Q, et al. 2016 IEEE Photon. Technol. Lett. 28 1593

    [17]

    Tan Y D, Zhang S L, Zhang S, et al. 2013 Sci. Rep. 3 2912

    [18]

    Li J, Tan Y D, Zhang S L 2015 Opt. Lett. 40 3615

    [19]

    Liu W X, Liu M, Zhang S 2008 Appl. Opt. 47 5562

    [20]

    Niu H S, Niu Y X, Liu N, Liu W W, Wang C L 2015 Acta Phys. Sin. 64 084208 (in Chinese) [牛海莎, 牛燕雄, 刘宁, 刘雯雯, 王彩丽 2015 物理学报 64 084208]

    [21]

    Cen Z F, Li X T 2010 Acta Phys. Sin. 59 5784 (in Chinese) [岑兆丰, 李晓彤 2010 物理学报 59 5784]

    [22]

    Huang K, Li S, Ma Y, Tian X, Zhou H, Zhang Z Y 2018 Acta Phys. Sin. 67 064205 (in Chinese) [黄科, 李松, 马跃, 田昕, 周辉, 张智宇 2018 物理学报 67 064205]

  • [1] Huang Xiang-Dong, Meng Tian-Wei, Ding Dao-Xian, Wang Zhao-Hua. A novel phase difference frequency estimator based on forward and backward sub-segmenting. Acta Physica Sinica, 2014, 63(21): 214304. doi: 10.7498/aps.63.214304
    [2] Li Chang-Sheng, Chen Jia. How to eliminate unwanted elasto-optical birefringence from optical devices. Acta Physica Sinica, 2016, 65(3): 037801. doi: 10.7498/aps.65.037801
    [3] Fu Bo, Li Shu-Guang, Yao Yan-Yan, Zhang Lei, Zhang Mei-Yan, Liu Si-Ying. Coupling characteristics of dual-core high birefringence photonic crystal fibers. Acta Physica Sinica, 2009, 58(11): 7708-7715. doi: 10.7498/aps.58.7708
    [4] Yang Qian-Qian, Hou Lan-Tian. Octagonal photonic crystal fiber of birefringence. Acta Physica Sinica, 2009, 58(12): 8345-8351. doi: 10.7498/aps.58.8345
    [5] Yan Feng-Ping, Li Yi-Fan, Wang Lin, Gong Tao-Rong, Liu Peng, Liu Yang, Tao Pei-Lin, Qu Mei-Xia, Jian Shui-Sheng. Design and characteristics of a near-elliptic inner cladding High birefringent polarization-stable photonic crystal fiber. Acta Physica Sinica, 2008, 57(9): 5735-5741. doi: 10.7498/aps.57.5735
    [6] Wang Jing-Li, Yao Jian-Quan, Chen He-Ming, Bing Pi-Bin, Li Zhong-Yang, Zhong Kai. Design and study of high birefringent terahertz photonic crystal fiber with hybrid crystal lattice. Acta Physica Sinica, 2011, 60(10): 104219. doi: 10.7498/aps.60.104219
    [7] Fu Xiao-Xia, Chen Ming-Yang. Terahertz transmission optical fiber with low absorptionloss and high birefringence. Acta Physica Sinica, 2011, 60(7): 074222. doi: 10.7498/aps.60.074222
    [8] Bai Jin-Jun, Wang Chang-Hui, Huo Bing-Zhong, Wang Xiang-Hui, Chang Sheng-Jiang. A broadband low loss and high birefringence terahertz photonic bandgap photonic crystal fiber. Acta Physica Sinica, 2011, 60(9): 098702. doi: 10.7498/aps.60.098702
    [9] Wang Wei, Yang Bo. Dispersion and birefringence analysis of photonic crystal fiber with rhombus air-core structure. Acta Physica Sinica, 2012, 61(6): 064601. doi: 10.7498/aps.61.064601
    [10] Qi Sheng-Wen, Yang Xiu-Qin, Chen Kuan, Zhang Chun-Ping, Zhang Lian-Shun, Wang Xin-Yu, Xu Tang, Liu Yong-Liang, Zhang Guang-Yin. Photoinduced birefringence in an azo-dye-doped polymer. Acta Physica Sinica, 2005, 54(7): 3189-3193. doi: 10.7498/aps.54.3189
    [11] Jia Wei-Guo, Yang Xing-Yu. Vector modulation instability in an arbitrary polarized direction in strong birefringence fibers. Acta Physica Sinica, 2005, 54(3): 1053-1058. doi: 10.7498/aps.54.1053
    [12] Li Shu-Guang, Xing Guang-Long, Zhou Gui-Yao, Hou Lan-Tian. Numerical simulation of square-lattice photonic crystal fiber with high birefringence and low confinement loss. Acta Physica Sinica, 2006, 55(1): 238-243. doi: 10.7498/aps.55.238
    [13] Wang Xiao-Yan, Li Shu-Guang, Liu Shuo, Zhang Lei, Yin Guo-Bing, Feng Rong-Pu. Midinfrared As2 S3 chalcogenide glass broadband normal dispersion photonic crystal fiber with high birefringence and high nonlinearity. Acta Physica Sinica, 2011, 60(6): 064213. doi: 10.7498/aps.60.064213
    [14] Wang Wei, Yang Bo, Song Hong-Ru, Fan Yue. Characteristic analyses of high birefringence and two zero dispersion points photonic crystal fiber with octagonal lattices. Acta Physica Sinica, 2012, 61(14): 144601. doi: 10.7498/aps.61.144601
    [15] Jiang Wei, Zhao Huan, Wang Guo-Cui, Wang Xin-Ke, Han Peng, Sun Wen-Feng, Ye Jia-Sheng, Feng Sheng-Fei, Zhang Yan. Birefringence characteristics of magnesium oxide crystal in terahertz frequency region by using terahertz focal plane imaging. Acta Physica Sinica, 2020, 69(20): 208702. doi: 10.7498/aps.69.20200766
    [16] Zhang Yong-Wei, Yin Chun-Hao, Zhao Qiang, Li Fu-Qiang, Zhu Shan-Shan, Liu Hai-Shun. Theoretical research of correlation of electronic structure with birefringence and anisotropy of TiO2. Acta Physica Sinica, 2012, 61(2): 027801. doi: 10.7498/aps.61.027801
    [17] Shen Wei-Min, Jin Yong-Xing, Shao Zhong-Xing. Reflection and refraction on the surface of a biaxial crystal. Acta Physica Sinica, 2003, 52(12): 3049-3054. doi: 10.7498/aps.52.3049
    [18] Li Zheng-Ying, Wang Hong-Hai, Jiang Ning, Cheng Song-Lin, Zhao Lei, Yu Xin. Demodulation method for second harmonic signal in optical fiber gas sensor. Acta Physica Sinica, 2009, 58(6): 3821-3826. doi: 10.7498/aps.58.3821
    [19] Yue Song, Zhang Zhao-Chuan, Gao Dong-Ping. Injection-locking of magnetrons with matched impedance. Acta Physica Sinica, 2013, 62(17): 178401. doi: 10.7498/aps.62.178401
    [20] Yang Xuan, Wang Yin, Wang Deng-Long, Ding Jian-Wen. Controlling collision properties of solitons in five-level M-type triple quantum dot electromagnetically induced transparency medium by inter-dot tunneling coupling. Acta Physica Sinica, 2020, 69(17): 174203. doi: 10.7498/aps.69.20200141
  • Citation:
Metrics
  • Abstract views:  839
  • PDF Downloads:  69
  • Cited By: 0
Publishing process
  • Received Date:  30 January 2018
  • Accepted Date:  01 April 2018
  • Published Online:  05 August 2018

Theoretical and experimental research on influence of cavity frequency difference in birefringent laser feedback system

    Corresponding author: Zhu Lian-Qing, zhulianqing@sina.com
  • 1. School of Instrument Science and Opto-electronics Engineering, Beijing Information Science and Technology University, Beijing 100192, China;
  • 2. State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing 100084, China
Fund Project:  Project supported by Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT_16R07).

Abstract: The internal stress of glass material directly affects the processing quality of glass components and the service life of optical components. It is an important factor that relates to the overall system performance, safety, and reliability. Aerospace, precision optical systems, precision machining and other areas generally highly value the stress measurements of glass components. For example, the internal stress in the medium-glass material of precision imaging system will lead to the degradation of optical performance and reduce the image quality; the stress in the glass material used as the gain medium of high-power solid-state lasers not only directly affects the polarization state of the output light, but also shortens the service life of the laser; the stress concentration in the load-bearing glass of aircraft windshields, building glass curtain walls, etc., will cause serious accidents such as popping due to the reduction of glass mechanical properties. Therefore, the high sensitivity and large measurement range of stress detection technology has become a current research hotspot. Stress measurement techniques based on the birefringent external cavity laser feedback effect has received widespread attention due to its advanced and novel measurement principle. It is generally accepted in the traditional theory that the output phase of the laser in a feedback system is only determined by the phase retardation of birefringent element in an external cavity, and the measurement error is induced by the non-linear movement of external mirror. In this paper, the orthogonally polarized laser principle and the three-cavity equivalent model are combined to explain the influence of cavity frequency difference on the output of laser in feedback system. The frequency difference caused by the birefringence of the laser cavity is measured by comparing the intervals between adjacent longitudinal modes, and the frequency tuning feedback experiment is carried out. Theoretical analysis and experimental results show that the output phase of the laser is determined by the phase retardation of the external cavity, the frequency difference of the internal cavity, and the length of the external cavity. This conclusion is also confirmed by the measurement of the standard quarter wave plate. For a feedback system with an internal cavity frequency difference of 5 MHz and external cavity length of 150 mm, the phase difference induced by internal cavity frequency difference is about 0.573. The laser can output a single longitudinal mode below 40 MHz of the internal cavity frequency difference, and the length of the external cavity is generally larger than 150 mm when the actual system is designed, so the phase difference introduced by these two parameters cannot be ignored and must be calibrated. This study summarizes the phase characteristics of the orthogonally polarized laser under the joint of anisotropy feedback cavity, supplements the physical content of the laser feedback, and has great significance for accurate laser measurement of stress-birefringence, displacement, and distance.

Reference (22)

Catalog

    /

    返回文章
    返回