Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Observation of hydrodynamic phenomena of plasma interaction in hohlraums

Li Hang, Yang Dong, Li San-Wei, Kuang Long-Yu, Li Li-Ling, Yuan Zheng, Zhang Hai-Ying, Yu Rui-Zhen, Yang Zhi-Wen, Chen Tao, Cao Zhu-Rong, Pu Yu-Dong, Miao Wen-Yong, Wang Feng, Yang Jia-Min, Jiang Shao-En, Ding Yong-Kun, Hu Guang-Yue, Zheng Jian
PDF
Get Citation
  • In indirect-drive inertial confinement fusion (ICF), laser beams are injected into a high-Z hohlraum and the laser energy is converted into intense X-ray radiation, which ablates a capsule located in the center of the hohlraum, and thus making it implode. To achieve high implosion efficiency, it is required that the hohlraum inner wall plasma movement, which will block further laser injection through the laser entrance hole (LEH), be suppressed. Evolution of hohlraum radiation nonuniformity caused by the plasma movement will result in implosion asymmetry which will prevent the ignition from happening. Therefore it is very important to study the hydrodynamic movement of high-Z plasma in ICF experiment.
    In ICF hohlraum, various plasmas of laser spots, corona, radiation ablation and jets move in different ways driven by laser ablation and X-ray radiation ablation, which is hard to observe and study. An X-ray dual spectral band time-resolved imaging method is developed to clearly observe the motion of various plasmas in hohlraum. Based on the time-resolved X-ray framing camera, using the typical gold plasma emission spectrum, the gold microstrip MCP response spectrum, and the 1.5 μm Al or 3 μm Ti filter transmittance spectrum, the two narrow-band X-ray peaks at 0.8 keV and 2.5 keV are highlighted. The 0.8 keV X-ray shows the Planck spectrum of gold plasma, and 2.5 keV X-ray indicates the M-band of gold plasma.
    In the vacuum hohlraum, jets are observed clearly, which are verified to be 4 times the sound speed experimentally. The generation mechanism of gold plasma jets in the ICF hohlraum is mainly due to collision rather than magnetic field, because it is estimated that thermal pressure is much bigger than magnetic pressure. In the gas-filled hohlraum, low-Z C5H12 gas can effectively eliminate high-Z gold jets and suppress the high-Z gold coronal plasma movement. The interface between the low-Z and high-Z substance is observed clearly, and gold plasma is accumulated obviously in the later period at the interface. Moreover, spike and filamentous structure occur at the interface between the two substances, which is probably caused by the hydrodynamic instability. The 0.8 keV rather than 2.5 keV X-ray is observed around inner wall, which originates from the low-temperature plasma driven by radiation ablation and is predicted by simulation code. Furthermore, the pressure balance between the two substances and the density steepness at the interface are also analyzed.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11435011, 11775204, 11505170, 11405160, 11305160).
    [1]

    Atzeni S, Meyer-ter-Vehn J 2004 The Physics of Inertial Fusion (Oxford: Clarendon Press) p131

    [2]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339

    [3]

    Glenzer S H, Alley W E, Estabrook K G, de Groot J S, Haines M G, Hammer J H, Jadaud J P, Macgowan B J, Moody J D, Rozmus W, Suter L J, Weiland T L, Williams E A 1999 Phys. Plasmas 6 2117

    [4]

    Foster J M, Wilde B H, Rosen P A, Perry T S, Fell M, Edwards M J, Lasinski B F, Turner R E, Gittings M L 2002 Phys. Plasmas 9 2251

    [5]

    Li C K, Seguin F H, Frenje J A, Rosenberg M, Petrasso R D, Amendt P A, Koch J A, Landen O L, Park H S, Robey H F, Town R P J, Casner A, Philippe F, Betti R, Knauer J P, Meyerhofer D D, Back C A, Kilkenny J D, Nikroo A 2010 Science 327 1231

    [6]

    Budil K S, Perry T S, Bell P M 1996 Rev. Sci. Instrum. 67 485

    [7]

    Dewald E L, Rosen M, Glenzer S H, Suter L J, Girard F, Jadaud J P, Schein J, Constantin C, Wagon F, Huser G, Neumayer P, Landen O L 2008 Phys. Plasmas 15 072706

    [8]

    Rochau G A, Bailey J E, Chandler G A, Nash T J, Nielsen D S, Dunham G S, Garcia O F, Joseph N R, Keister J W, Madlener M J, Morgan D V, Moy K J, Wu M 2006 Rev. Sci. Instrum 77 10E323

    [9]

    Riodel M S, Dejus R J 2004 AIP Conference Proceedings 705 784

    [10]

    Li H, Song T M, Yang J M, Zhu T, Lin Z W, Zheng J H, Kuang L Y, Zhang H Y, Yu R Z, Liu S Y, Jiang S E, Ding Y K, Hu G Y, Zhao B, Zheng J 2015 Phys. Plasmas 22 072705

    [11]

    Nilson P M, Willingale L, Kaluza M C, Kamperidis C, Minardi S, Wei M S, Fernandes P, Notley M 2006 Phys. Rev. Lett. 97 255001

    [12]

    Zhong J Y, Li Y T, Wang X G, Wang J Q, Dong Q L, Xiao C J, Wang S J, Liu X, Zhang L, An L, Wang F L, Zhu J Q, Gu Y A, He X T, Zhao G, Zhang J 2010 Nat. Phys. 6 984

    [13]

    Ma Y Z, Xu B B, Ge Z Y, Gan L F, Meng L, Wang S W, Kawata S 2018 Phys. Plasmas 25 042706

    [14]

    Guo H Y, Wang L F, Ye W H, Wu J F, Zhang W Y 2017 Chin. Phys. B 26 125202

    [15]

    Li C K, Seguin F H, Frenje J A, Petrasso R D, Amendt P A, Town R P J, Landen O L, Rygg J R, Betti R, Knauer J P, Meyerhofer D D, Soures J M, Back C A, Kilkenny J D, Nikroo A 2009 Phys. Rev. Lett. 102 205001

    [16]

    Zel'dovich Ya B, Raizer Yu P 2002 Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Mineola, NY: Dover) p522

    [17]

    Schneider M B, Hinkel D E, Landen O L, Froula D H, Heeter R F, Langdon A B, May M J, McDonald J, Ross J S, Singh M S, Suter L J, Widmann K, Young B K, Baldis H A, Constantin C, Bahr R, Glebov V Y, Seka W, Stoeckl C 2006 Phys. Plasmas 13 112701

    [18]

    Li C K, Seguin F H, Frenje J A, Rosenberg M J, Rinderknecht H G, Zylstra A B, Petrasso R D, Amendt P A, Landen O L, MacKinnon A J, Town R P J, Wilks S C, Betti R, Meyerhofer D D, Soures J M, Hund J, Kilkenny J D, Nikroo A 2012 Phys. Rev. Lett. 108 025001

    [19]

    Li C K, Ryutov D D, Hu S X, Rosenberg M J, Zylstra A B, Se'guin F H, Frenje J A, Casey D T, Johnson M G, Manuel M J E, Rinderknecht H G, Petrasso R D, Amendt P A, Park H S, Remington B A, Wilks S C, Betti R, Froula D H, Knauer J P, Meyerhofer D D, Drake R P, Kuranz C C, Young R, Koenig M 2013 Phys. Rev. Lett. 111 235003

  • [1]

    Atzeni S, Meyer-ter-Vehn J 2004 The Physics of Inertial Fusion (Oxford: Clarendon Press) p131

    [2]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339

    [3]

    Glenzer S H, Alley W E, Estabrook K G, de Groot J S, Haines M G, Hammer J H, Jadaud J P, Macgowan B J, Moody J D, Rozmus W, Suter L J, Weiland T L, Williams E A 1999 Phys. Plasmas 6 2117

    [4]

    Foster J M, Wilde B H, Rosen P A, Perry T S, Fell M, Edwards M J, Lasinski B F, Turner R E, Gittings M L 2002 Phys. Plasmas 9 2251

    [5]

    Li C K, Seguin F H, Frenje J A, Rosenberg M, Petrasso R D, Amendt P A, Koch J A, Landen O L, Park H S, Robey H F, Town R P J, Casner A, Philippe F, Betti R, Knauer J P, Meyerhofer D D, Back C A, Kilkenny J D, Nikroo A 2010 Science 327 1231

    [6]

    Budil K S, Perry T S, Bell P M 1996 Rev. Sci. Instrum. 67 485

    [7]

    Dewald E L, Rosen M, Glenzer S H, Suter L J, Girard F, Jadaud J P, Schein J, Constantin C, Wagon F, Huser G, Neumayer P, Landen O L 2008 Phys. Plasmas 15 072706

    [8]

    Rochau G A, Bailey J E, Chandler G A, Nash T J, Nielsen D S, Dunham G S, Garcia O F, Joseph N R, Keister J W, Madlener M J, Morgan D V, Moy K J, Wu M 2006 Rev. Sci. Instrum 77 10E323

    [9]

    Riodel M S, Dejus R J 2004 AIP Conference Proceedings 705 784

    [10]

    Li H, Song T M, Yang J M, Zhu T, Lin Z W, Zheng J H, Kuang L Y, Zhang H Y, Yu R Z, Liu S Y, Jiang S E, Ding Y K, Hu G Y, Zhao B, Zheng J 2015 Phys. Plasmas 22 072705

    [11]

    Nilson P M, Willingale L, Kaluza M C, Kamperidis C, Minardi S, Wei M S, Fernandes P, Notley M 2006 Phys. Rev. Lett. 97 255001

    [12]

    Zhong J Y, Li Y T, Wang X G, Wang J Q, Dong Q L, Xiao C J, Wang S J, Liu X, Zhang L, An L, Wang F L, Zhu J Q, Gu Y A, He X T, Zhao G, Zhang J 2010 Nat. Phys. 6 984

    [13]

    Ma Y Z, Xu B B, Ge Z Y, Gan L F, Meng L, Wang S W, Kawata S 2018 Phys. Plasmas 25 042706

    [14]

    Guo H Y, Wang L F, Ye W H, Wu J F, Zhang W Y 2017 Chin. Phys. B 26 125202

    [15]

    Li C K, Seguin F H, Frenje J A, Petrasso R D, Amendt P A, Town R P J, Landen O L, Rygg J R, Betti R, Knauer J P, Meyerhofer D D, Soures J M, Back C A, Kilkenny J D, Nikroo A 2009 Phys. Rev. Lett. 102 205001

    [16]

    Zel'dovich Ya B, Raizer Yu P 2002 Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Mineola, NY: Dover) p522

    [17]

    Schneider M B, Hinkel D E, Landen O L, Froula D H, Heeter R F, Langdon A B, May M J, McDonald J, Ross J S, Singh M S, Suter L J, Widmann K, Young B K, Baldis H A, Constantin C, Bahr R, Glebov V Y, Seka W, Stoeckl C 2006 Phys. Plasmas 13 112701

    [18]

    Li C K, Seguin F H, Frenje J A, Rosenberg M J, Rinderknecht H G, Zylstra A B, Petrasso R D, Amendt P A, Landen O L, MacKinnon A J, Town R P J, Wilks S C, Betti R, Meyerhofer D D, Soures J M, Hund J, Kilkenny J D, Nikroo A 2012 Phys. Rev. Lett. 108 025001

    [19]

    Li C K, Ryutov D D, Hu S X, Rosenberg M J, Zylstra A B, Se'guin F H, Frenje J A, Casey D T, Johnson M G, Manuel M J E, Rinderknecht H G, Petrasso R D, Amendt P A, Park H S, Remington B A, Wilks S C, Betti R, Froula D H, Knauer J P, Meyerhofer D D, Drake R P, Kuranz C C, Young R, Koenig M 2013 Phys. Rev. Lett. 111 235003

  • [1] Wang Feng, Peng Xiao-Shi, Yang Dong, Li Zhi-Chao, Xu Tao, Wei Hui-Yue, Liu Shen-Ye. Backscattered Light diagnostic technique on Shen Guang-III prototype Laser Facility. Acta Physica Sinica, 2013, 62(17): 175202. doi: 10.7498/aps.62.175202
    [2] Zhang Lu, Dong Yun-Song, Jing Long-Fei, Lin Zhi-Wei, Tan Xiu-Lan, Kuang Long-Yu, Li Hang, Shang Wan-Li, Zhang Wen-Hai, Li Zhi-Chao, Zhan Xia-Yu, Yuan Guang-Hui, Li Hai, Jiang Shao-En, Yang Jia-Min, Ding Yong-Kun. Experimental study on improving hohlraum wall reemission ratio by low density gold foam. Acta Physica Sinica, 2016, 65(1): 015202. doi: 10.7498/aps.65.015202
    [3] Dispersion analysis of a coupled-cavity slow wave structure filled with plasma. Acta Physica Sinica, 2007, 56(12): 7138-7146. doi: 10.7498/aps.56.7138
    [4] Liu Shuai, Huang Yi-Zhi, Guo Hai-Shan, Zhang Yong-Peng, Yang Lan-Jun. Plasma dynamic characteristics of a parallel-rail accelerator. Acta Physica Sinica, 2018, 67(6): 065201. doi: 10.7498/aps.67.20172403
    [5] Han Bo, Wang Fei-Lu, Liang Gui-Yun, Zhao Gang. Excitation processes in experimental photoionized plasmas. Acta Physica Sinica, 2016, 65(11): 110503. doi: 10.7498/aps.65.110503
    [6] Fu Xi-Quan, Liu Cheng-Yi, Guo Hong. . Acta Physica Sinica, 2002, 51(6): 1326-1331. doi: 10.7498/aps.51.1326
    [7] Zhang Qiu-Ju, Sheng Zheng-Ming, Zhang Jie. Solitons formed by ultrashort laser pulses propagating in a plasma. Acta Physica Sinica, 2004, 53(3): 798-802. doi: 10.7498/aps.53.798
    [8] Yang Chun-Lin. Propagation characteristics of speckle field in plasma. Acta Physica Sinica, 2018, 67(8): 085201. doi: 10.7498/aps.67.20171795
    [9] Meng Liang, Zhang Jie, Zhu Xiao-Dong, Wen Xiao-Hui, Ding Fang. Formations of conic surfaces on diamond films induced by hot filament assisted double-bias hydrogen plasma. Acta Physica Sinica, 2008, 57(4): 2334-2339. doi: 10.7498/aps.57.2334
    [10] Yuan Nai-Chang, Liu Shao-Bin, Zhu Chuan-Xi. FDTD simulation for plasma photonic crystals. Acta Physica Sinica, 2005, 54(6): 2804-2808. doi: 10.7498/aps.54.2804
  • Citation:
Metrics
  • Abstract views:  92
  • PDF Downloads:  8
  • Cited By: 0
Publishing process
  • Received Date:  19 July 2018
  • Accepted Date:  16 October 2018

Observation of hydrodynamic phenomena of plasma interaction in hohlraums

  • 1. Laser Fusion Research Center, Chinese Academy of Engineering Physics, Mianyang 621900, China;
  • 2. Basic Plasma Key Laboratory of Chinese Academy of Sciences, University of Science and Technology of China, Hefei 230026, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 11435011, 11775204, 11505170, 11405160, 11305160).

Abstract: In indirect-drive inertial confinement fusion (ICF), laser beams are injected into a high-Z hohlraum and the laser energy is converted into intense X-ray radiation, which ablates a capsule located in the center of the hohlraum, and thus making it implode. To achieve high implosion efficiency, it is required that the hohlraum inner wall plasma movement, which will block further laser injection through the laser entrance hole (LEH), be suppressed. Evolution of hohlraum radiation nonuniformity caused by the plasma movement will result in implosion asymmetry which will prevent the ignition from happening. Therefore it is very important to study the hydrodynamic movement of high-Z plasma in ICF experiment.
In ICF hohlraum, various plasmas of laser spots, corona, radiation ablation and jets move in different ways driven by laser ablation and X-ray radiation ablation, which is hard to observe and study. An X-ray dual spectral band time-resolved imaging method is developed to clearly observe the motion of various plasmas in hohlraum. Based on the time-resolved X-ray framing camera, using the typical gold plasma emission spectrum, the gold microstrip MCP response spectrum, and the 1.5 μm Al or 3 μm Ti filter transmittance spectrum, the two narrow-band X-ray peaks at 0.8 keV and 2.5 keV are highlighted. The 0.8 keV X-ray shows the Planck spectrum of gold plasma, and 2.5 keV X-ray indicates the M-band of gold plasma.
In the vacuum hohlraum, jets are observed clearly, which are verified to be 4 times the sound speed experimentally. The generation mechanism of gold plasma jets in the ICF hohlraum is mainly due to collision rather than magnetic field, because it is estimated that thermal pressure is much bigger than magnetic pressure. In the gas-filled hohlraum, low-Z C5H12 gas can effectively eliminate high-Z gold jets and suppress the high-Z gold coronal plasma movement. The interface between the low-Z and high-Z substance is observed clearly, and gold plasma is accumulated obviously in the later period at the interface. Moreover, spike and filamentous structure occur at the interface between the two substances, which is probably caused by the hydrodynamic instability. The 0.8 keV rather than 2.5 keV X-ray is observed around inner wall, which originates from the low-temperature plasma driven by radiation ablation and is predicted by simulation code. Furthermore, the pressure balance between the two substances and the density steepness at the interface are also analyzed.

Reference (19)

Catalog

    /

    返回文章
    返回