Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study on Jahn-Teller effect in Cr monolayer film

Zhang Wei Chen Kai-Bin Chen Zhen-Dong

First-principles study on Jahn-Teller effect in Cr monolayer film

Zhang Wei, Chen Kai-Bin, Chen Zhen-Dong
PDF
Get Citation
  • Computational physics has been used in many scientific research fields, in which first-principles calculation based on density functional theory has made brilliant achievements. Unlike three-dimensional materials, low-dimensional materials present fantastic physical effect, due to the reduction of material dimensions. With the rapid development of two-dimensional materials, people have a more in-depth understanding of them. Requirements for high performance of two-dimensional materials are raised for potential applications, so the exploration of some effects affecting the stability of two-dimensional materials becomes more and more important. Based on the pioneers' work, Jahn-Teller effect is found to have a certain influence on the stabilities of two-dimensional structure of some elements. In the present paper, we explain the stable structure of Cr monolayer film through theoretical calculation, providing a guidance for experimental synthesis. Using first-principles calculation, we study a series of two-dimensional structures (rectangular, square, hexagonal, oblique and centered rectangular) of Cr monolayer film, focusing on the structural stability and electronic properties. Firstly, the equilibrium lattice constant and cohesive energy of each structure are calculated. Then, the bond angle and lattice constant dependence of the total energy are analyzed in detail. Finally, we investigate the energy band structures, total electronic densities of states, charge densities and electron occupation numbers of orbitals. The results show that low-symmetry oblique and centered rectangular lattice are stable in the two-dimensional system of Cr, while high-symmetry square and hexagonal lattices are not stable and the adhesive energy of the rectangular lattices is very small. Two stable structures of Cr monolayer sheet are formed due to hexagonal structure distortion. The hexagonal structure can shape into a centered rectangular structure with the increase of bond angle, while it changes into an oblique structure with the decrease of bond angle. Because of Jahn-Teller effect, the degenerate energy level spontaneously splits. Then the structure deforms into two reduced-symmetry structures, resulting in a stable system. Therefore, we can infer that the Jahn-Teller effect plays a crucial role in the structural stability of monolayer sheet.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11504051) and the Science Fund for Distinguished Young Scholars of Fujian Province, China (Grant No. 2018J06001).
    [1]

    Chhowalla M, Shin H S, Eda G, Li L, Loh K P, Zhang H 2013 Nat. Chem. 5 263

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [3]

    Li S S, Wang S F, Tang D M, Zhao W J, Xu H L, Chu L Q, Bando Y, Golberg D, Eda G 2015 Appl. Mater. Today 1 60

    [4]

    Zhou J D, Lin J H, Huang X W, Zhou Y, Chen Y, Xia J, Wang H, Xie Y, Yu H M, Lei J C, Wu D, Liu F C, Fu Q D, Zeng Q S, Hsu C H, Yang C L, Lu L, Yu T, Shen Z X, Lin H, Yakobson B I, Liu Q, Suenaga K, Liu G T, Liu Z 2018 Nature 556 355

    [5]

    Liu C C, Feng W X, Yao Y G 2011 Phys. Rev. Lett. 107 76802

    [6]

    Xu Y, Yan B H, Zhang H J, Wang J, Xu G, Tang P Z, Duan W H, Zhang S C 2013 Phys. Rev. Lett. 111 136804

    [7]

    Ezawa M 2012 Phys. Rev. Lett. 109 55502

    [8]

    Liu N, Jin S F, Guo L W, Wang G, Shao H Z, Chen L, Chen X L 2017 Phys. Rev. B 95 155311

    [9]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [10]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169

    [11]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [12]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [13]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671

    [14]

    Monkhors H J, Pack J D 1976 Phys. Rev. B 13 5188

    [15]

    Blöchl P E, Jepsen O, Andersen O K 1994 Phys. Rev. B 49 16223

    [16]

    TonKov E T, Ponyatovsky E G 2005 Phase Transformations of Elements Under High Pressure (Boca Raton: CRC Press) pp242-244

    [17]

    Olle M, Ceballos G, Serrate D, Gambardella P 2012 Nano Lett. 12 4431

    [18]

    Robertson A W, Warner J H 2011 Nano Lett. 11 1182

  • [1]

    Chhowalla M, Shin H S, Eda G, Li L, Loh K P, Zhang H 2013 Nat. Chem. 5 263

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [3]

    Li S S, Wang S F, Tang D M, Zhao W J, Xu H L, Chu L Q, Bando Y, Golberg D, Eda G 2015 Appl. Mater. Today 1 60

    [4]

    Zhou J D, Lin J H, Huang X W, Zhou Y, Chen Y, Xia J, Wang H, Xie Y, Yu H M, Lei J C, Wu D, Liu F C, Fu Q D, Zeng Q S, Hsu C H, Yang C L, Lu L, Yu T, Shen Z X, Lin H, Yakobson B I, Liu Q, Suenaga K, Liu G T, Liu Z 2018 Nature 556 355

    [5]

    Liu C C, Feng W X, Yao Y G 2011 Phys. Rev. Lett. 107 76802

    [6]

    Xu Y, Yan B H, Zhang H J, Wang J, Xu G, Tang P Z, Duan W H, Zhang S C 2013 Phys. Rev. Lett. 111 136804

    [7]

    Ezawa M 2012 Phys. Rev. Lett. 109 55502

    [8]

    Liu N, Jin S F, Guo L W, Wang G, Shao H Z, Chen L, Chen X L 2017 Phys. Rev. B 95 155311

    [9]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [10]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169

    [11]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [12]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [13]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671

    [14]

    Monkhors H J, Pack J D 1976 Phys. Rev. B 13 5188

    [15]

    Blöchl P E, Jepsen O, Andersen O K 1994 Phys. Rev. B 49 16223

    [16]

    TonKov E T, Ponyatovsky E G 2005 Phase Transformations of Elements Under High Pressure (Boca Raton: CRC Press) pp242-244

    [17]

    Olle M, Ceballos G, Serrate D, Gambardella P 2012 Nano Lett. 12 4431

    [18]

    Robertson A W, Warner J H 2011 Nano Lett. 11 1182

  • [1] Ren Xian-Li, Zhang Wei-Wei, Wu Xiao-Yong, Wu Lu, Wang Yue-Xia. Prediction of short range order in high-entropy alloys and its effect on the electronic, magnetic and mechanical properties. Acta Physica Sinica, 2020, 69(4): 046102. doi: 10.7498/aps.69.20191671
    [2] Xu Xian-Da, Zhao Lei, Sun Wei-Feng. First-principles on the energy band mechanism for modifying conduction property of graphene nanomeshes. Acta Physica Sinica, 2020, 69(4): 047101. doi: 10.7498/aps.69.20190657
    [3] Fang Wen-Yu, Zhang Peng-Cheng, Zhao Jun, Kang Wen-Bin. Electronic structure and photocatalytic properties of H, F modified two-dimensional GeTe. Acta Physica Sinica, 2020, 69(5): 056301. doi: 10.7498/aps.69.20191391
    [4] Zhu Xiao-Li, Hu Yao-Gai, Zhao Zheng-Yu, Zhang Yuan-Nong. Comparison between ionospheric disturbances caused by barium and cesium. Acta Physica Sinica, 2020, 69(2): 029401. doi: 10.7498/aps.69.20191266
    [5] Algethami Obaidallah A (Yi Bi), Li Ge-Tian, Liu Zhu-Hong, Ma Xing-Qiao. Phase transformation, magnetic properties and exchange bias of Heusler alloy Mn50–xCrxNi42Sn8. Acta Physica Sinica, 2020, 69(5): 058102. doi: 10.7498/aps.69.20191551
    [6] Diagnosis of capacitively coupled plasma driven by pulse-modulated 27.12 MHz by using an emissive probe. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191864
    [7] Wu Yu-Ming, Ding Xiao, Wang Ren, Wang Bing-Zhong. Theoretical analysis of wide-angle metamaterial absorbers based on equivalent medium theory. Acta Physica Sinica, 2020, 69(5): 054202. doi: 10.7498/aps.69.20191732
    [8] Liang Jin-Jie, Gao Ning, Li Yu-Hong. Surface effect on \begin{document}${\langle 100 \rangle }$\end{document} interstitial dislocation loop in iron. Acta Physica Sinica, 2020, 69(3): 036101. doi: 10.7498/aps.69.20191379
    [9] Zhang Meng, Yao Ruo-He, Liu Yu-Rong. A channel thermal noise model of nanoscaled metal-oxide-semiconductor field-effect transistor. Acta Physica Sinica, 2020, 69(5): 057101. doi: 10.7498/aps.69.20191512
    [10] Huang Yong-Feng, Cao Huai-Xin, Wang Wen-Hua. Conjugate linear symmetry and its application to \begin{document}$ {\mathcal{P}}{\mathcal{T}} $\end{document}-symmetry quantum theory. Acta Physica Sinica, 2020, 69(3): 030301. doi: 10.7498/aps.69.20191173
    [11] Zhao Jian-Ning, Liu Dong-Huan, Wei Dong, Shang Xin-Chun. Thermal rectification mechanism of one-dimensional composite structure with interface thermal contact resistance. Acta Physica Sinica, 2020, 69(5): 056501. doi: 10.7498/aps.69.20191409
    [12] Investigate the effect of source-drain conduction in single-event transient on nanoscale bulk fin field effect transistor. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191896
    [13] Liu Hou-Tong, Mao Min-Juan. An accurate inversion method of aerosol extinction coefficient about ground-based lidar without needing calibration. Acta Physica Sinica, 2019, 68(7): 074205. doi: 10.7498/aps.68.20181825
  • Citation:
Metrics
  • Abstract views:  81
  • PDF Downloads:  3
  • Cited By: 0
Publishing process
  • Received Date:  07 September 2018
  • Accepted Date:  01 October 2018

First-principles study on Jahn-Teller effect in Cr monolayer film

  • 1. Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China;
  • 2. Fujian Provincial Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Xiamen 361005, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 11504051) and the Science Fund for Distinguished Young Scholars of Fujian Province, China (Grant No. 2018J06001).

Abstract: Computational physics has been used in many scientific research fields, in which first-principles calculation based on density functional theory has made brilliant achievements. Unlike three-dimensional materials, low-dimensional materials present fantastic physical effect, due to the reduction of material dimensions. With the rapid development of two-dimensional materials, people have a more in-depth understanding of them. Requirements for high performance of two-dimensional materials are raised for potential applications, so the exploration of some effects affecting the stability of two-dimensional materials becomes more and more important. Based on the pioneers' work, Jahn-Teller effect is found to have a certain influence on the stabilities of two-dimensional structure of some elements. In the present paper, we explain the stable structure of Cr monolayer film through theoretical calculation, providing a guidance for experimental synthesis. Using first-principles calculation, we study a series of two-dimensional structures (rectangular, square, hexagonal, oblique and centered rectangular) of Cr monolayer film, focusing on the structural stability and electronic properties. Firstly, the equilibrium lattice constant and cohesive energy of each structure are calculated. Then, the bond angle and lattice constant dependence of the total energy are analyzed in detail. Finally, we investigate the energy band structures, total electronic densities of states, charge densities and electron occupation numbers of orbitals. The results show that low-symmetry oblique and centered rectangular lattice are stable in the two-dimensional system of Cr, while high-symmetry square and hexagonal lattices are not stable and the adhesive energy of the rectangular lattices is very small. Two stable structures of Cr monolayer sheet are formed due to hexagonal structure distortion. The hexagonal structure can shape into a centered rectangular structure with the increase of bond angle, while it changes into an oblique structure with the decrease of bond angle. Because of Jahn-Teller effect, the degenerate energy level spontaneously splits. Then the structure deforms into two reduced-symmetry structures, resulting in a stable system. Therefore, we can infer that the Jahn-Teller effect plays a crucial role in the structural stability of monolayer sheet.

Reference (18)

Catalog

    /

    返回文章
    返回