Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optimization of thermal performance of cladding power stripper in fiber laser

Xia Qing-Gan Xiao Wen-Bo Li Jun-Hua Jin Xin Ye Guo-Ming Wu Hua-Ming Ma Guo-Hong

Optimization of thermal performance of cladding power stripper in fiber laser

Xia Qing-Gan, Xiao Wen-Bo, Li Jun-Hua, Jin Xin, Ye Guo-Ming, Wu Hua-Ming, Ma Guo-Hong
PDF
HTML
Get Citation
  • In the process of eliminating the residual pump light and high-order laser light, the cladding power stripper (CPS) generates abundant heat, which can affect the performance of the fiber laser system due to the photothermal conversion. Hence the efficient dissipation of thermal energy becomes a current research focus. In this paper, the five kinds of existing CPSs are simulated and compared with the results in the literature. It is found that the surface-volume ratio between the heat source and the heat transfer medium can be effectively increased by changing the shape of the polymer filling hole when the CPS is made by the high refractive index polymer method, thus reducing the temperature peak and valley value of the CPS. Besides, the heat distribution uniformity of CPS can be improved by combining the high refractive index polymer method with the acid corrosion method to prepare the two-section fiber cladding structure with uneven thickness. According to the above results, a novel CPS structure is proposed and its thermal effect is studied. The results show that when the cladding light power is 150 W, the temperature peak value of the CPS is 298 K, the temperature valley value is 293 K, and the temperature difference is 5 K. Comparing with the above five CPSs, the peak temperature is reduced by up to 11.3%, and the valley temperature is reduced by up to 8.4%, the temperature difference is reduced by up to 87.5%, which proves that the novel CPS structure can effectively suppress the temperature rising and have excellent heat distribution uniformity.
      Corresponding author: Xiao Wen-Bo, xiaowenbo1570@163.com
    [1]

    Nilsson J, Payne D N 2011 Science 332 921

    [2]

    Richardson D J, Nilsson J, Clarkson W A 2010 J. Opt. Soc. Am. B 27 B63

    [3]

    张志强 2012 博士学位论文 (北京: 北京邮电大学)

    Zhang Z Q 2012 Ph. D. Dissertation (Beijing: Beijing University of Posts and Telecommunications) (in Chinese)

    [4]

    赵水, 段云锋, 王强, 张秀娟, 邓明发 2015 激光与红外 45 749

    Zhao S, Duan Y F, Wang Q, Zhang X J, Deng M F 2015 Laser & Infrared 45 749

    [5]

    郭良, 谌鸿伟, 王泽锋, 侯静, 陈金宝 2014 激光与光电子学进展 51 020602

    Guo L, Chen H W, Wang Z F, Hou J, Chen J B 2014 Laser & Optoelectronics Progress 51 020602

    [6]

    Huang Z H, Liang X B, Li C Y, Lin H H, Li Q, Wang J J, Jing F 2016 Appl. Optics 55 297

    [7]

    Xiao Y, Brunet F, Kanskar M, Wetter A, Holehouse N 2012 Opt. Express 20 3296

    [8]

    龚凯 2019 硕士学位论文 (广州: 广东工业大学)

    Gong K 2019 M. S. Dissertation (Guangzhou: Guangdong University of Technology) (in Chinese)

    [9]

    邱禹力 2016 硕士学位论文 (武汉: 华中科技大学)

    Qiu Y L 2016 M. S. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)

    [10]

    李杰雄, 李波, 朱广志, 岳建堡, 王智用 2017 激光技术 41 798

    Li J X, Li B, Zhu G Z, Yue J B, Wang Z Y 2017 Laser Technology 41 798

    [11]

    Wetter A, Faucher M, Sevigny B 2008 Proc. SPIE 6873 687327

    [12]

    Kliner A, Hou K C, Plötner M, Hupel C, Stelzner T, Schreiber T, Eberhardt R, Tünnermann A 2013 Proc. SPIE 8616 86160N

    [13]

    Babazadeh A, Nasirabad R R, Norouzey A, Hejaz K, Poozesh R, Heidariazar A, Golshan A H, Roohforouz A, Jafari S N T, Lafouti M 2014 Appl. optics 53 2611

    [14]

    孙静, 邹淑珍, 陈寒, 于海娟, 王旭葆, 林学春 2017 激光与光电子学进展 54 110001

    Sun J, Zou S Z, Chen H, Yu H J, Wang X B, Lin X C 2017 Laser & Optoelectronics Progress 54 110001

    [15]

    龚凯, 郝明明, 李京波 2017 科学通报 62 3768

    Gong K, Hao M M, Li J B 2017 Chin. Sci. Bull. 62 3768

    [16]

    Wang W L, Leng J Y, Cao J Q, Guo S F, Xu X J, Jiang Z F 2013 Opt. Commun. 287 187

    [17]

    Zhang Y L, Zhao L, Liang X B, Li C, Zhou T D, Wang S W, Deng Y, Wei X F 2015 Proc. SPIE 9255 92550N

    [18]

    Poozesh R, Norouzy A, Golshan A H, Roohforouz A, Babazadeh A, Nasirabad R R, Jafari N T, Heidariazar A, Hejaz K, Alavian A, Amidian A 2012 J. Lightwave Technol. 30 3199

    [19]

    Yin L, Yan M J, Han Z G, Wang H L, Shen H, Zhu R H 2017 Opt. Express 25 8760

    [20]

    胡志涛, 陈晓龙, 何兵, 周军, 张建华 2016 中国激光 43 0701004

    Hu Z T, Chen X L, He B, Zhou J, Zhang J H 2016 Chin. J. Lasers 43 0701004

    [21]

    张国庆 2016 博士学位论文 (广州: 华南理工大学)

    Zhang G Q 2016 Ph. D. Dissertation (Guangzhou: South China University of Technology) (in Chinese)

  • 图 1  五种CPS的结构图 (a)剥离器1; (b)剥离器2; (c)剥离器3; (d)剥离器4; (e)剥离器5

    Figure 1.  Structural diagrams of five CPS: (a) CPS1; (b) CPS2; (c) CPS3; (d)CPS4; (e) CPS5.

    图 2  Pb = 150 W时五种CPS的切片热分布图 (a)剥离器1; (b)剥离器2; (c)剥离器3; (d)剥离器4; (e)剥离器5

    Figure 2.  The slice thermal profile of five CPS when Pb = 150 W: (a) CPS1; (b) CPS2; (c) CPS3; (d) CPS4; (e) CPS5.

    图 3  剥离器6, 7, 8的结构图及两段式光纤细节图 (a)剥离器6; (b)剥离器7; (c)剥离器8; (d)两段式光纤细节图

    Figure 3.  Structural diagrams of CPS 6, 7, 8 and Two-section optical fiber detail diagram: (a) CPS6; (b) CPS7; (c) CPS8; (d)Two-section optical fiber detail diagram.

    表 1  Pb = 150 W时五种CPS的整体热性能数据

    Table 1.  Overall thermal performance data of five CPS when Pb = 150 W.

    序号温度峰值温度谷值温差
    剥离器1321 K314 K7 K
    剥离器2313 K299 K14 K
    剥离器3316 K295 K21 K
    剥离器4336 K296 K40 K
    剥离器5325 K320 K5 K
    DownLoad: CSV

    表 2  Pb = 200 W时五种CPS的整体热性能数据

    Table 2.  Overall thermal performance data of five CPS when Pb = 200 W.

    序号温度峰值温度谷值温差
    剥离器1326 K318 K8 K
    剥离器2319 K301 K18 K
    剥离器3324 K295 K29 K
    剥离器4350 K296 K54 K
    剥离器5335 K328 K7 K
    DownLoad: CSV

    表 3  Pb = 150 W时剥离器6, 7, 8的整体整体热性能数据

    Table 3.  Overall thermal performance data of CPS 6, 7 and 8 when Pb = 150 W.

    序号温度峰值温度谷值温差
    剥离器6309 K293 K16 K
    剥离器7320 K315 K5 K
    剥离器8298 K293 K5 K
    DownLoad: CSV
  • [1]

    Nilsson J, Payne D N 2011 Science 332 921

    [2]

    Richardson D J, Nilsson J, Clarkson W A 2010 J. Opt. Soc. Am. B 27 B63

    [3]

    张志强 2012 博士学位论文 (北京: 北京邮电大学)

    Zhang Z Q 2012 Ph. D. Dissertation (Beijing: Beijing University of Posts and Telecommunications) (in Chinese)

    [4]

    赵水, 段云锋, 王强, 张秀娟, 邓明发 2015 激光与红外 45 749

    Zhao S, Duan Y F, Wang Q, Zhang X J, Deng M F 2015 Laser & Infrared 45 749

    [5]

    郭良, 谌鸿伟, 王泽锋, 侯静, 陈金宝 2014 激光与光电子学进展 51 020602

    Guo L, Chen H W, Wang Z F, Hou J, Chen J B 2014 Laser & Optoelectronics Progress 51 020602

    [6]

    Huang Z H, Liang X B, Li C Y, Lin H H, Li Q, Wang J J, Jing F 2016 Appl. Optics 55 297

    [7]

    Xiao Y, Brunet F, Kanskar M, Wetter A, Holehouse N 2012 Opt. Express 20 3296

    [8]

    龚凯 2019 硕士学位论文 (广州: 广东工业大学)

    Gong K 2019 M. S. Dissertation (Guangzhou: Guangdong University of Technology) (in Chinese)

    [9]

    邱禹力 2016 硕士学位论文 (武汉: 华中科技大学)

    Qiu Y L 2016 M. S. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)

    [10]

    李杰雄, 李波, 朱广志, 岳建堡, 王智用 2017 激光技术 41 798

    Li J X, Li B, Zhu G Z, Yue J B, Wang Z Y 2017 Laser Technology 41 798

    [11]

    Wetter A, Faucher M, Sevigny B 2008 Proc. SPIE 6873 687327

    [12]

    Kliner A, Hou K C, Plötner M, Hupel C, Stelzner T, Schreiber T, Eberhardt R, Tünnermann A 2013 Proc. SPIE 8616 86160N

    [13]

    Babazadeh A, Nasirabad R R, Norouzey A, Hejaz K, Poozesh R, Heidariazar A, Golshan A H, Roohforouz A, Jafari S N T, Lafouti M 2014 Appl. optics 53 2611

    [14]

    孙静, 邹淑珍, 陈寒, 于海娟, 王旭葆, 林学春 2017 激光与光电子学进展 54 110001

    Sun J, Zou S Z, Chen H, Yu H J, Wang X B, Lin X C 2017 Laser & Optoelectronics Progress 54 110001

    [15]

    龚凯, 郝明明, 李京波 2017 科学通报 62 3768

    Gong K, Hao M M, Li J B 2017 Chin. Sci. Bull. 62 3768

    [16]

    Wang W L, Leng J Y, Cao J Q, Guo S F, Xu X J, Jiang Z F 2013 Opt. Commun. 287 187

    [17]

    Zhang Y L, Zhao L, Liang X B, Li C, Zhou T D, Wang S W, Deng Y, Wei X F 2015 Proc. SPIE 9255 92550N

    [18]

    Poozesh R, Norouzy A, Golshan A H, Roohforouz A, Babazadeh A, Nasirabad R R, Jafari N T, Heidariazar A, Hejaz K, Alavian A, Amidian A 2012 J. Lightwave Technol. 30 3199

    [19]

    Yin L, Yan M J, Han Z G, Wang H L, Shen H, Zhu R H 2017 Opt. Express 25 8760

    [20]

    胡志涛, 陈晓龙, 何兵, 周军, 张建华 2016 中国激光 43 0701004

    Hu Z T, Chen X L, He B, Zhou J, Zhang J H 2016 Chin. J. Lasers 43 0701004

    [21]

    张国庆 2016 博士学位论文 (广州: 华南理工大学)

    Zhang G Q 2016 Ph. D. Dissertation (Guangzhou: South China University of Technology) (in Chinese)

  • [1] Internal dynamic detection of soliton molecules in a Ti: sapphire femtosecond laser. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191989
    [2] Research on few-mode PAM regenerator based on nonlinear optical fiber loop mirror. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191858
    [3] Simulation of the nonlinear cahn-hilliard equation based onthe local refinement pure meshless method. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191829
    [4] Zhang Zhan-Gang, Lei Zhi-Feng, Tong Teng, Li Xiao-Hui, Wang Song-Lin, Liang Tian-Jiao, Xi Kai, Peng Chao, He Yu-Juan, Huang Yun, En Yun-Fei. Comparison of neutron induced single event upsets in 14 nm FinFET and 65 nm planar static random access memory devices. Acta Physica Sinica, 2020, 69(5): 056101. doi: 10.7498/aps.69.20191209
    [5] Liang Jin-Jie, Gao Ning, Li Yu-Hong. Surface effect on \begin{document}${\langle 100 \rangle }$\end{document} interstitial dislocation loop in iron. Acta Physica Sinica, 2020, 69(3): 036101. doi: 10.7498/aps.69.20191379
    [6] Investigate the effect of source-drain conduction in single-event transient on nanoscale bulk fin field effect transistor. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191896
    [7] Dong Zheng-Qiong, Zhao Hang, Zhu Jin-Long, Shi Ya-Ting. Influence of incident illumination on optical scattering measurement of typical photoresist nanostructure. Acta Physica Sinica, 2020, 69(3): 030601. doi: 10.7498/aps.69.20191525
    [8] Hu Yao-Hua, Liu Yan, Mu Ge, Qin Qi, Tan Zhong-Wei, Wang Mu-Guang, Yan Feng-Ping. Application of compressive sensing based on multimode fiber specklegram in optical image encryption. Acta Physica Sinica, 2020, 69(3): 034203. doi: 10.7498/aps.69.20191143
    [9] The physics-based model of AlGaN/GaN high electron mobility transistor outer fringing capacitances. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191931
    [10] Ren Xian-Li, Zhang Wei-Wei, Wu Xiao-Yong, Wu Lu, Wang Yue-Xia. Prediction of short range order in high-entropy alloys and its effect on the electronic, magnetic and mechanical properties. Acta Physica Sinica, 2020, 69(4): 046102. doi: 10.7498/aps.69.20191671
    [11] Thermodynamics of Laser Plasma Removal of Micro and Nano Particles. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191933
    [12] Liu Hou-Tong, Mao Min-Juan. An accurate inversion method of aerosol extinction coefficient about ground-based lidar without needing calibration. Acta Physica Sinica, 2019, 68(7): 074205. doi: 10.7498/aps.68.20181825
    [13] Identifying two different configurations of the H32+ by the direct above-threshold ionization spectrum in two-color laser field. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20200013
  • Citation:
Metrics
  • Abstract views:  63
  • PDF Downloads:  1
  • Cited By: 0
Publishing process
  • Received Date:  16 July 2019
  • Accepted Date:  17 September 2019
  • Available Online:  13 December 2019
  • Published Online:  01 January 2020

Optimization of thermal performance of cladding power stripper in fiber laser

    Corresponding author: Xiao Wen-Bo, xiaowenbo1570@163.com
  • 1. Key Laboratory of Image Processing & Pattern Recognition in Jiangxi Province, Nanchang Hangkong University, Nanchang 330063, China
  • 2. Key Laboratory of Nondestructive Testing(Ministry of Education), Nanchang Hangkong University, Nanchang 330063, China
  • 3. Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang 330063, China
  • 4. College of Mechanical and Electrical Engineering, Nanchang University, Nanchang 330031, China

Abstract: In the process of eliminating the residual pump light and high-order laser light, the cladding power stripper (CPS) generates abundant heat, which can affect the performance of the fiber laser system due to the photothermal conversion. Hence the efficient dissipation of thermal energy becomes a current research focus. In this paper, the five kinds of existing CPSs are simulated and compared with the results in the literature. It is found that the surface-volume ratio between the heat source and the heat transfer medium can be effectively increased by changing the shape of the polymer filling hole when the CPS is made by the high refractive index polymer method, thus reducing the temperature peak and valley value of the CPS. Besides, the heat distribution uniformity of CPS can be improved by combining the high refractive index polymer method with the acid corrosion method to prepare the two-section fiber cladding structure with uneven thickness. According to the above results, a novel CPS structure is proposed and its thermal effect is studied. The results show that when the cladding light power is 150 W, the temperature peak value of the CPS is 298 K, the temperature valley value is 293 K, and the temperature difference is 5 K. Comparing with the above five CPSs, the peak temperature is reduced by up to 11.3%, and the valley temperature is reduced by up to 8.4%, the temperature difference is reduced by up to 87.5%, which proves that the novel CPS structure can effectively suppress the temperature rising and have excellent heat distribution uniformity.

    • 光纤激光器具有光束质量好、转换效率高、使用成本低、可靠性高和体积小等优势, 已经被广泛应用于工业加工、光学传感、医疗器械和军事装备等领域[1-4]. 随着半导体激光器抽运技术的不断发展, 光纤激光器的输出功率不断增大. 由于增益光纤无法将抽运光完全吸收, 其输出的激光中会含有在包层中传输的残余抽运光和高阶激光等无用光, 也称为包层光, 这些包层光会恶化激光的光束质量, 并对系统中的元件造成损害, 所以必须将其剥离[5-7]. 常见输出功率为千瓦级的光纤激光器中包层光的功率(简称包层功率, 用物理量Pb表示)为数百瓦[8-10], 国内外研究者提出不同的技术剥离包层功率, 包括高折胶法、酸腐蚀法以及高折射率基质法等[11-13]. 高性能包层功率剥离器(cladding power stripper, CPS)要求功率衰减系数大、纤芯光传输损耗低和温升系数小, 能在激光高功率输出下安全稳定地工作[14], 但现有方法和制备工艺等存在的问题, 会使得包层功率在光纤前端几毫米范围内大量剥离, 从而导致光纤局部温度陡升(例如采用高折胶法或酸腐蚀法), 其发热集中问题仍无法很好地解决.

      为此, 本文对国内外已有的五种CPS进行热效应仿真研究. 结果表明, 这些CPS对包层功率的剥离各具特色, 但并非是最优的; 通过改进剥离方法并改变填胶孔的形状, 本文提出了一种低温度峰谷值且热分布均匀的包层功率剥离器结构.

    2.   五种CPS结构、仿真边界条件及结果分析
    • 龚凯等[15]于2017年采用高折胶法制作了一种CPS, 结构如图1(a)所示, 称其为剥离器1; 其热沉材料为铝, 长120 mm, 宽20 mm, 高20 mm; 填胶孔呈圆柱形, 长120 mm, 半径为5 mm; 填胶孔内的光纤用折射率为1.68的高折胶涂覆.

      Figure 1.  Structural diagrams of five CPS: (a) CPS1; (b) CPS2; (c) CPS3; (d)CPS4; (e) CPS5.

      Wang等[16]于2013年采用高折胶法制作了一种CPS, 结构如图1(b)所示, 称其为剥离器2; 其热沉材料为铝, 长100 mm, 宽20 mm, 高20 mm; 填胶孔呈半椭球形, 长100 mm; 将其光纤除去涂覆层后分为三段, 用折射率为1.44, 1.46和1.56的高折胶进行间隔涂覆.

      Zhang等[17]于2015年采用高折胶法制作了一种CPS, 结构如图1(c)所示, 称其为剥离器3; 其热沉材料为铝, 长100 mm, 宽20 mm, 高20 mm; 填胶孔是一个V型槽, 长100 mm; V型槽内的光纤用折射率为1.68的高折胶涂覆. 该CPS将光纤以圆环形式绕在圆盘上, 本文截取一段作为研究对象.

      Reza Poozesh等[18]于2012年采用高折胶法和酸腐蚀法结合, 制作了一种CPS, 结构如图1(d)所示, 称其为剥离器4; 其热沉材料为铜, 长70 mm, 宽4 mm, 高5 mm; 填胶孔是一个方形槽, 长70 mm, 宽0.6 mm, 高2 mm; 方形槽中放置用HF酸腐蚀过的光纤, 用折射率为1.56的高折胶涂覆.

      Yin等[19]于2017年采用酸腐蚀法制作了一种CPS, 结构如图1(e)所示, 称其为剥离器5; 其热沉材料为铝, 长100 mm, 宽10 mm, 高10 mm; 用HF酸将其光纤包层腐蚀成粗细不均匀的两段, 第一段长50 mm, 其包层半径为0.156 mm, 第二段长45 mm, 其包层半径为0.1 mm; 两段光纤中间由一段长5 mm的圆锥台形光纤衔接.

    • 使用Comsol软件的固体传热模块对五种CPS进行热效应仿真, 将外部环境温度设为293.15 K. 剥离器1—4是基于高折胶法制作的, 包层功率主要在高折胶与热沉金属界面转化为热; 由于高折胶固化后的光透过率很高, 界面光热转化功率近似为包层功率, 所以将边界热源设在胶-热沉界面. 剥离器5采用酸腐蚀法, 包层功率在被腐蚀的光纤表面剥离并转化为热, 所以将边界热源设在光纤表面. 热通量边界设为热沉的外表面, 包层功率剥离器封装在光纤激光器中, 故不考虑其热沉表面对流散热[20].

    • 将包层功率设置为150 W, 对五种CPS进行热效应仿真, 其切片热分布如图2所示, 其中剥离器1—5分别对应图中的(a)—(e). 切片热分布图中每种CPS都有三列温度标示图, 从左至右分别给出了CPS xy平面、yz平面和zx平面的切片温度.

      Figure 2.  The slice thermal profile of five CPS when Pb = 150 W: (a) CPS1; (b) CPS2; (c) CPS3; (d) CPS4; (e) CPS5.

      首先, 从图2中可以发现, 剥离器1三个切片的温度峰值相同, 都是321 K; 温度谷值相差1 K, xy平面和zx平面的相同为314 K, yz平面的为315 K; 温度峰值和温度谷值差, xy平面和zx平面的相同为7 K, yz平面的为6 K. 剥离器2三个切片的温度峰值相差1 K, xy平面和zx平面的相同为312 K, yz平面的为313 K; 温度谷值相差1 K, yz平面和zx平面的相同为299 K, xy平面的为300 K; 温度峰值和温度谷值差, xy平面的为12 K, yz平面的为14 K, zx平面的为13 K. 剥离器3三个切片的温度峰值相同, 都是316 K; 温度谷值相差13 K, xy平面和yz平面的相同为295 K, zx平面的为308 K; 温度峰值和温度谷值差, xy平面和yz平面的相同为21 K, zx平面的为8 K. 剥离器4三个切片的温度峰值相同, 都是336 K; 温度谷值相同, 都是296 K; 温度峰值和温度谷值差, xy平面、yz平面和zx平面的相同, 都是40 K. 剥离器5三个切片的温度峰值相差1 K, yz平面和zx平面的相同为325 K, xy平面的为324 K; 温度谷值相同, 都是320 K; 温度峰值和温度谷值差, xy平面的为4 K, yz平面和zx平面的相同为5 K.

      其次, 对比剥离器1—5的温度峰值及谷值, 发现剥离器2的温度峰值在五种剥离器中最低, 剥离器3的温度谷值最低, 所以剥离器2和3的散热性能更好. 原因可能是剥离器2的填胶孔呈半椭球形, 剥离器3的填胶孔呈三棱柱凹槽形; 相比于其他三种剥离器, 剥离器2和剥离器3填胶孔的表面积-体积比更大, 即其热源与传热介质间的表面积-体积比更大, 散热性能更好[21].

      对比剥离器1—5的温度峰值及谷值变化, 再次发现剥离器4的切片热分布均匀性最好, 剥离器4三个切片的温度峰谷值相同. 其原因可能是剥离器4将高折胶法和酸腐蚀法结合, 使用HF酸将光纤的包层腐蚀, 可以使得光纤中的包层功率散射到高折胶中[9], 高折胶吸收来自不同方向的散射光, 所以剥离器内部由光转化的热也更加的均匀, 其切片热分布均匀性也更好.

      对比温度峰值和谷值差, 最后发现剥离器5的温差最小, 仅5 K, 说明其整体热分布均匀性更好; 其原因可能是剥离器5采用了分段酸腐蚀法, 相比于传统的酸腐蚀法, 将光纤包层腐蚀成粗细不均匀的几段, 可以使包层功率在光纤轴向均匀的剥离, 从而使得剥离器内部的热分布更加均匀.

      为此研究CPS的整体热分布性能. 包层功率为150 W时, 五种CPS的整体热性能数据记录在表1.

      序号温度峰值温度谷值温差
      剥离器1321 K314 K7 K
      剥离器2313 K299 K14 K
      剥离器3316 K295 K21 K
      剥离器4336 K296 K40 K
      剥离器5325 K320 K5 K

      Table 1.  Overall thermal performance data of five CPS when Pb = 150 W.

      表1可以看出, 剥离器1温度峰值为321 K, 温度谷值为314 K, 温差为7 K; 剥离器2温度峰值为313 K, 温度谷值为299 K, 温差为14 K; 剥离器3温度峰值为316 K, 温度谷值为295 K, 温差为21 K; 剥离器4温度峰值为336 K, 温度谷值为296 K, 温差为40 K; 剥离器5温度峰值为325 K, 温度谷值为320 K, 温差为5 K. 剥离器2的温度峰值在五种剥离器中最低, 剥离器3的温度谷值最低, 剥离器5的温差最小. 该结果与切片热分布图得出的结果一致, 进一步证明了上述结论.

      为了更进一步验证以上结论, 将包层功率设为200 W, 五种CPS的整体热性能数据见表2.

      序号温度峰值温度谷值温差
      剥离器1326 K318 K8 K
      剥离器2319 K301 K18 K
      剥离器3324 K295 K29 K
      剥离器4350 K296 K54 K
      剥离器5335 K328 K7 K

      Table 2.  Overall thermal performance data of five CPS when Pb = 200 W.

      表2可以看出, 包层功率为200 W时, 剥离器1温度峰值为326 K, 温度谷值为318 K, 温差为8 K; 剥离器2温度峰值为319 K, 温度谷值为301 K, 温差为18 K; 剥离器3温度峰值为324 K, 温度谷值为295 K, 温差为29 K; 剥离器4温度峰值为350 K, 温度谷值为296 K, 温差为54 K; 剥离器5温度峰值为335 K, 温度谷值为328 K, 温差为7 K. 由此可知, 剥离器2的温度峰值在五种剥离器中最低, 剥离器3的温度谷值最低, 剥离器5的温差最小. 上述结论与包层功率为150 W时得出的结论一致, 进一步证明了本文结论.

    3.   剥离器优化及结果分析
    • 根据上述结论, 为了进一步降低CPS的温度峰谷值, 结合剥离器2和3的优点制作了剥离器6, 如图3(a)所示; 该剥离器热沉材料为铝, 长100 mm, 宽20 mm, 高20 mm; 填胶孔设计为圆锥台形, 以获得更大的表面积-体积比, 长100 mm, 顶面半径为6 mm, 底面半径为4 mm.

      Figure 3.  Structural diagrams of CPS 6, 7, 8 and Two-section optical fiber detail diagram: (a) CPS6; (b) CPS7; (c) CPS8; (d)Two-section optical fiber detail diagram.

      根据上述结论, 为了进一步提升CPS的热分布均匀性, 结合剥离器4和5的优点制作了剥离器7, 如图3(b)所示; 该剥离器热沉材料为铝, 长100 mm, 宽10 mm, 高10 mm; 填胶孔呈方形, 长100 mm, 宽4 mm, 高5 mm. 剥离器7将高折胶法和酸腐蚀法结合, 其内部光纤用HF酸腐蚀成粗细不均匀的两段, 粗端光纤呈圆柱形, 长50 mm, 半径为0.156 mm; 细端光纤也呈圆柱形, 长45 mm, 半径为0.1 mm; 两段光纤由一段呈圆锥台形的光纤衔接, 长5 mm, 顶面半径0.156 mm, 底面半径0.1 mm.

      根据上述结论, 为了进一步降低CPS的温度峰谷值并提升其热分布均匀性, 结合剥离器2, 3, 4, 5的优点制作了剥离器8, 如图3(c)所示; 该剥离器热沉材料为铝, 长100 mm, 宽20 mm, 高20 mm; 其填胶孔形状与剥离器6相同, 呈圆锥台形, 长100 mm, 顶面半径为6 mm, 底面半径为4 mm; 剥离方法与剥离器7相同, 将高折胶法和酸腐蚀法结合, 其内部光纤用HF酸腐蚀成粗细不均匀的两段, 粗端光纤呈圆柱形, 长50 mm, 半径为0.156 mm; 细端光纤也呈圆柱形, 长45 mm, 半径为0.1 mm; 两段光纤由一段呈圆锥台形的光纤衔接, 长5 mm, 顶面半径为0.156 mm, 底面半径为0.1 mm. 图3(d)是两段式光纤细节展示图.

      表3中分别记录了剥离器6, 7和8剥离150 W包层功率时的整体热性能数据. 由表3可以看出, 剥离器6温度峰值为309 K, 温度谷值为293 K, 温差为16 K; 剥离器7温度峰值为320 K, 温度谷值为315 K, 温差为5 K; 剥离器8温度峰值为298 K, 温度谷值为293 K, 温差为5 K.

      序号温度峰值温度谷值温差
      剥离器6309 K293 K16 K
      剥离器7320 K315 K5 K
      剥离器8298 K293 K5 K

      Table 3.  Overall thermal performance data of CPS 6, 7 and 8 when Pb = 150 W.

      首先对比表3中剥离器6与表1中剥离器2和3, 可以看出剥离器6的温度峰值相比于剥离器2下降了4 K, 比剥离器3下降了7 K; 剥离器6的温度谷值相比于剥离器2下降了6 K, 比剥离器3下降了2 K. 这证明了改变填胶孔的形状可以降低剥离器的温度峰谷值. 其次, 对比表3中剥离器7与表1中剥离器4和5, 可以看出剥离器7的温差为5 K, 相比于剥离器4下降了35 K, 与剥离器5相同. 这证明了将高折胶法和酸腐蚀法结合, 把光纤分段腐蚀成不均匀的两段可以提升剥离器的热分布均匀性. 最后, 对比表3中的剥离器6, 7和8, 发现剥离器8的温度峰值相比于剥离器6和7分别下降了11 K和22 K, 其温度谷值与剥离器6相同, 相比于剥离器7下降了22 K; 其温差与剥离器7相同都是5 K, 相比于剥离器6下降了11 K, 性能最优. 从而间接证明了上述分析的正确性.

    4.   结 论
    • 本文对国内外五种CPS的热效应进行研究和对比, 发现剥离器2的温度峰值最低, 剥离器3的温度谷值最低, 剥离器4的切片热分布最均匀, 剥离器5的温差最小. 原因在于改变填胶孔的形状可以增大热源与传热介质间的表面积-体积比, 从而降低剥离器的温度峰谷值; 将高折胶法与酸腐蚀法结合, 把光纤分段腐蚀成不均匀的两段, 可以使包层光无规则散射在光纤轴向, 从而使得包层功率均匀剥离以提升整体热分布均匀性. 为此本文结合上述分析, 提出了一种新颖的剥离器8. 研究表明: 在剥离150 W包层功率时, 其温度峰值为298 K, 温度谷值为293 K, 温差为5 K; 相比于引文中的五种CPS, 其温度峰值分别降低了4.8%—11.3%, 温度谷值分别降低了0.7%—8.4%, 温差分别降低了0—87.5%. 这证明了其能有效抑制温升及具有热分布均匀性.

Reference (21)

Catalog

    /

    返回文章
    返回