Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Generation of the array of optical traps by liquid crystal spatial light modulator

Gu Song-Bo Xu Shu-Wu Lu Jun-Fa Ji Xian-Ming Yin Jian-Ping

Generation of the array of optical traps by liquid crystal spatial light modulator

Gu Song-Bo, Xu Shu-Wu, Lu Jun-Fa, Ji Xian-Ming, Yin Jian-Ping
PDF
Get Citation
  • Liquid crystal spatial light modulator (LC-SLM) can be readily used to fabricate the diffractive optical elements. However, a disadvantage of the finite resolution always exists in LC-SLM. In this paper, a new scheme of fabricating phase grating with LC-SLM is proposed to produce one-dimensional (1D) and two-dimensional (2D) array of optical traps. The advantage of the LC-SLM is fully utilized and the disadvantage is well avoided in our scheme. The phase distribution of the grating is optimized by using iterative Fourier series expansion. The grating is designed by simulation according to the LC-SLM technique parameters, and the corresponding light intensity distribution is calculated. The results show that the array has very high peak value intensity and big gradient of intensity by illuminating the grating with a large detuning and low power laser. The optical dipole potential of trapping cold atoms achieves the order of mK, and the interaction force between atom and optical field is much greater than the atom gravity.
    • Funds: Project supported by the Key Program National Natural Science Foundation of China (Grant No. 11034002), the National Key Basic Research and Development Program of China (Grant No. 2011CB921602), the Open Research Fund of State Key Laboratory of Precision Spectroscopy, East China Normal University and the Natural Science Foundation of Jiangsu Province (Grant No. BK2008183).
    [1]

    Greiner M, Mandel O, Esslinger T, Hansch T W, Bloch I 2002 Nature 415 39

    [2]

    Raithel G, Birkl G, Kastberg A, Phillips W D, Rolston S L 1997 Phys. Rev. Lett. 78 630

    [3]

    Vuletic V, Chin C, Kerman A J, Chu S 1998 Phys. Rev. Lett. 81 5768

    [4]

    Dutta S K, Teo B K, Raithel G 1999 Phys. Rev. Lett. 83 1934

    [5]

    Tie L, Xue J K 2011 Chin. Phys. B 20 120311

    [6]

    Wang J J, Zhang A X, Xue J K 2011 Chin. Phys. B 20 080308

    [7]

    Grabouski A, Pfau T 2003 Eur. Phys. J. D 22 347

    [8]

    Folman R 2002 Adv. At. Mol. Opt. Phys. 48 263

    [9]

    Reichel J, Hansel W, Hommelhoff P, Hansch T W 2001 Appl. Phys. B 72 81

    [10]

    Grynberg G, Robilliard C 2001 Phys. Rep. 355 335

    [11]

    Semmler D, Wernsdorfer J, Bissbort U, Byczuk K, Hofstetter W 2010 Phys. Rev. B 82 235115

    [12]

    Michael Kastner 2010 Phys. Rev. Lett. 104 240403

    [13]

    David A, Kessler, Eli Barkai 2010 Phys. Rev. Lett. 105 120602

    [14]

    Yi L, Mejri S, McFerran J J, Le C Y, Bize S 2011 Phys. Rev. Lett. 106 073005

    [15]

    Dumke R, Volk M, Mther T, Buchkremer F B J, Birkl G, Ertmer W 2002 Phys. Rev. Lett. 89 097903

    [16]

    Ji X M, Lu J F, Mu R W, Yin J P 2006 Acta. Phys Sin. 55 3396 (in Chinses) [纪宪明, 陆俊发, 沐仁旺, 印建平 2006 物理学报 55 3396]

    [17]

    Gabriel M, David E, Jörgen B 2007 Appl. Opt. 46 95

    [18]

    Lu J F, Zhou Q, Ji X M, Yin J P 2011 Acta. Phys. Sin. 60 063701 (in Chinses) [陆俊发, 周琦, 纪宪明, 印建平 2011 物理学报 60 063701]

    [19]

    Qi X Q, Gao C Q 2011 Acta. Phys. Sin. 60 014208 (in Chinses) [齐晓庆, 高春清 2011 物理学报 60 014208]

    [20]

    Xheng H D, Yu Y J, Dai L M, Wang T 2010 Acta. Phys. Sin. 59 6145 (in Chinses) [郑华东, 于瀛洁, 代林茂, 王涛 2010 物理学报 59 6145]

    [21]

    Zhou Q, Lu J F, Yin J P 2010 Chin. Phys. B 19 093202

    [22]

    Zhou Q, Lu J F, Yin J P 2010 Chin. Phys. B 19 123203

    [23]

    Liu X Zhang J, Wu L Y, Gan Y F 2011 Chin. Phys. B 20 024211

    [24]

    Kotlyar V V, Seraphimovich P G, Soifer V A 1998 Opt. Laser. Eng. 29 261

    [25]

    Fienup J R, 1980 Opt. Eng. 19 297

    [26]

    Ripoll O, Kettunen V, Herzig H P 2004 Opt. Eng. 43 2549

    [27]

    Ji X M, Yin J P 2004 Acta Phys. Sin. 53 4163 (in Chinese) [纪宪明, 印建平 2004 物理学报 53 4163]

  • [1]

    Greiner M, Mandel O, Esslinger T, Hansch T W, Bloch I 2002 Nature 415 39

    [2]

    Raithel G, Birkl G, Kastberg A, Phillips W D, Rolston S L 1997 Phys. Rev. Lett. 78 630

    [3]

    Vuletic V, Chin C, Kerman A J, Chu S 1998 Phys. Rev. Lett. 81 5768

    [4]

    Dutta S K, Teo B K, Raithel G 1999 Phys. Rev. Lett. 83 1934

    [5]

    Tie L, Xue J K 2011 Chin. Phys. B 20 120311

    [6]

    Wang J J, Zhang A X, Xue J K 2011 Chin. Phys. B 20 080308

    [7]

    Grabouski A, Pfau T 2003 Eur. Phys. J. D 22 347

    [8]

    Folman R 2002 Adv. At. Mol. Opt. Phys. 48 263

    [9]

    Reichel J, Hansel W, Hommelhoff P, Hansch T W 2001 Appl. Phys. B 72 81

    [10]

    Grynberg G, Robilliard C 2001 Phys. Rep. 355 335

    [11]

    Semmler D, Wernsdorfer J, Bissbort U, Byczuk K, Hofstetter W 2010 Phys. Rev. B 82 235115

    [12]

    Michael Kastner 2010 Phys. Rev. Lett. 104 240403

    [13]

    David A, Kessler, Eli Barkai 2010 Phys. Rev. Lett. 105 120602

    [14]

    Yi L, Mejri S, McFerran J J, Le C Y, Bize S 2011 Phys. Rev. Lett. 106 073005

    [15]

    Dumke R, Volk M, Mther T, Buchkremer F B J, Birkl G, Ertmer W 2002 Phys. Rev. Lett. 89 097903

    [16]

    Ji X M, Lu J F, Mu R W, Yin J P 2006 Acta. Phys Sin. 55 3396 (in Chinses) [纪宪明, 陆俊发, 沐仁旺, 印建平 2006 物理学报 55 3396]

    [17]

    Gabriel M, David E, Jörgen B 2007 Appl. Opt. 46 95

    [18]

    Lu J F, Zhou Q, Ji X M, Yin J P 2011 Acta. Phys. Sin. 60 063701 (in Chinses) [陆俊发, 周琦, 纪宪明, 印建平 2011 物理学报 60 063701]

    [19]

    Qi X Q, Gao C Q 2011 Acta. Phys. Sin. 60 014208 (in Chinses) [齐晓庆, 高春清 2011 物理学报 60 014208]

    [20]

    Xheng H D, Yu Y J, Dai L M, Wang T 2010 Acta. Phys. Sin. 59 6145 (in Chinses) [郑华东, 于瀛洁, 代林茂, 王涛 2010 物理学报 59 6145]

    [21]

    Zhou Q, Lu J F, Yin J P 2010 Chin. Phys. B 19 093202

    [22]

    Zhou Q, Lu J F, Yin J P 2010 Chin. Phys. B 19 123203

    [23]

    Liu X Zhang J, Wu L Y, Gan Y F 2011 Chin. Phys. B 20 024211

    [24]

    Kotlyar V V, Seraphimovich P G, Soifer V A 1998 Opt. Laser. Eng. 29 261

    [25]

    Fienup J R, 1980 Opt. Eng. 19 297

    [26]

    Ripoll O, Kettunen V, Herzig H P 2004 Opt. Eng. 43 2549

    [27]

    Ji X M, Yin J P 2004 Acta Phys. Sin. 53 4163 (in Chinese) [纪宪明, 印建平 2004 物理学报 53 4163]

  • [1] Xu Shu-Wu, Zhou Qiao-Qiao, Gu Song-Bo, Ji Xian-Ming, Yin Jian-Ping. Generation of the three-dimensional array of optical trap by spatial light modulator. Acta Physica Sinica, 2012, 61(22): 223702. doi: 10.7498/aps.61.223702
    [2] Yin Jian-Ping, Lu Jun-Fa, Ji Xian-Ming, Mu Ren-Wang. Array of micro-optical traps for cold atoms or cold molecules using a Damman grating. Acta Physica Sinica, 2006, 55(7): 3396-3402. doi: 10.7498/aps.55.3396
    [3] Zhou Qiao-Qiao, Xu Shu-Wu, Lu Jun-Fa, Zhou Qi, Ji Xian-Ming, Yin Jian-Ping. Generation of the controllable triple-well optical trap by liquid-crystal spatial light modulator. Acta Physica Sinica, 2013, 62(15): 153701. doi: 10.7498/aps.62.153701
    [4] Xi Si-Xing, Wang Xiao-Lei, Huang Shuai, Chang Sheng-Jiang, Lin Lie. Generation of arbitrary vector beam based on optical holography. Acta Physica Sinica, 2015, 64(12): 124202. doi: 10.7498/aps.64.124202
    [5] Bai Yun-He, Zang Rui-Huan, Wang Pan, Rong Teng-Da, Ma Feng-Ying, Du Yan-Li, Duan Zhi-Yong, Gong Qiao-Xia. Single-shot incoherent digital holography based on spatial light modulator. Acta Physica Sinica, 2018, 67(6): 064202. doi: 10.7498/aps.67.20172127
    [6] Zheng Sen-Lin, Chen Jun, Lin Qiang. Improvement of the measuring precision by changing the pulse sequence in the three-level atom gravimeter. Acta Physica Sinica, 2005, 54(8): 3535-3541. doi: 10.7498/aps.54.3535
    [7] Xie Wan-Cai, Huang Su-Juan, Shao Wei, Zhu Fu-Quan, Chen Mu-Sheng. Free-space optical communication based on hybrid optical mode array encoding. Acta Physica Sinica, 2017, 66(14): 144102. doi: 10.7498/aps.66.144102
    [8] Yin Jian-Ping, Lu Jun-Fa, Ji Xian-Ming. Controllable four-well optical trap for cold atoms or molecules. Acta Physica Sinica, 2006, 55(4): 1740-1750. doi: 10.7498/aps.55.1740
    [9] Yin Jian-Ping, Ji Xian-Ming. Controllable doublewell optical trapfor cold atoms or molecules. Acta Physica Sinica, 2004, 53(12): 4163-4172. doi: 10.7498/aps.53.4163
    [10] Lu Jun-Fa, Zhou Qi, Pan Xiao-Qing, Yin Jian-Ping. Theoretical and experimental study of a novel double-well optical dipole trap for two-species of cold atoms or molecules. Acta Physica Sinica, 2013, 62(23): 233701. doi: 10.7498/aps.62.233701
  • Citation:
Metrics
  • Abstract views:  1757
  • PDF Downloads:  460
  • Cited By: 0
Publishing process
  • Received Date:  07 November 2011
  • Accepted Date:  16 January 2012
  • Published Online:  05 August 2012

Generation of the array of optical traps by liquid crystal spatial light modulator

  • 1. Science College, Nantong University, Nantong 226007, China;
  • 2. State Key Laboratory of Precision Spectroscopy, Department of Physics, East China Normal University, Shanghai 200062, China;
  • 3. Department of Physics, East China Institute of Technology, Fuzhou 344000, China
Fund Project:  Project supported by the Key Program National Natural Science Foundation of China (Grant No. 11034002), the National Key Basic Research and Development Program of China (Grant No. 2011CB921602), the Open Research Fund of State Key Laboratory of Precision Spectroscopy, East China Normal University and the Natural Science Foundation of Jiangsu Province (Grant No. BK2008183).

Abstract: Liquid crystal spatial light modulator (LC-SLM) can be readily used to fabricate the diffractive optical elements. However, a disadvantage of the finite resolution always exists in LC-SLM. In this paper, a new scheme of fabricating phase grating with LC-SLM is proposed to produce one-dimensional (1D) and two-dimensional (2D) array of optical traps. The advantage of the LC-SLM is fully utilized and the disadvantage is well avoided in our scheme. The phase distribution of the grating is optimized by using iterative Fourier series expansion. The grating is designed by simulation according to the LC-SLM technique parameters, and the corresponding light intensity distribution is calculated. The results show that the array has very high peak value intensity and big gradient of intensity by illuminating the grating with a large detuning and low power laser. The optical dipole potential of trapping cold atoms achieves the order of mK, and the interaction force between atom and optical field is much greater than the atom gravity.

Reference (27)

Catalog

    /

    返回文章
    返回