Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Impact of nitride passivation layer on ionizing irradiation damage on LPNP bipolar transistors

Yang Jian-Qun Dong Lei Liu Chao-Ming Li Xing-Ji Xu Peng-Fei

Impact of nitride passivation layer on ionizing irradiation damage on LPNP bipolar transistors

Yang Jian-Qun, Dong Lei, Liu Chao-Ming, Li Xing-Ji, Xu Peng-Fei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Bipolar junction transistors (BJTs) are generally employed in spacecraft, due to their current drive capability, linearity and excellent matching characteristics. High-energy particles and cosmic rays in space environment remarkably affect electronic devices, especially in BJTs producing total ionizing dose, displacement damage or single event effect. Among them, ionizing irradiation effects on BJTs dominates. For BJTs, ionization damage can induce the oxide trapped charges in SiO2 layer and interface traps in Si/SiO2, resulting in more recombination base current and the degradation of current gain. Consequently, the accumulation of both oxide charges and interface traps causes an increase in the base current.#br#Passivation layer is also an important factor of the irradiation effects of BJTs. Previous works only studied the degradation of electrical properties of the devices with/without passivation layer induced by irradiation, and did not give an influence mechanisms of passivation layer on the irradiation respond of devices. Therefore, the irradiation damage mechanisms of the BJTs with or without nitride passivation layer are not clear so far.#br#In this paper, the impact of Si3N4 passivation layer on ionizing irradiation damage on lateral PNP bipolar transistors (LPNP) was studied by using 60Co gamma irradiation source. The KEITHLEY 4200-SCS semiconductor parameter analyzer was used to measure the relationship between the electrical properties of LPNP transistors and ionization dose, including the Gummel characteristics, the degradation of current gain, etc. The irradiation defects of the LPNP transistors with/without passivation layer structure were analyzed by the deep level transient spectroscopy (DLTS). The experimental results show that the electrical properties of the LPNP transistors with and without passivation layer exhibit similar characteristics. For all samples, the base current increases with increasing the total dose, while the collector current does not almost change. Compared with the LPNP transistors without Si3N4 passivation layer, the degradation of LPNP transistor with Si3N4 passivation layer is severe.#br#Based on the excess base current as a function of base-emitter voltage for the LPNP transistors with/without nitride passivation layer, the degradation of bipolar transistors with nitride passivation layer is severe under the same irradiation conditions. The DLTS analyses show that compared with the bipolar transistors without nitride passivation layer, the signal peak located at about 300 K is shifted to low temperature for the bipolar transistors with nitride passivation layer. The above results show that the LPNP transistors with nitride passivation could produce a large number of interface states with the energy level is closer to the middle of the forbidden band during the irradiation, which is attributed to a large number of hydrogen presence during the processing of fabricated passivation layer.
      Corresponding author: Li Xing-Ji, lxj0218@hit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11575049).
    [1]

    Li X J, Geng H B, Lan M J, Yang D Z, He S Y, Liu C M 2010 Chin. Phys. B 19 066103

    [2]

    Pien C F, Amir H F A, Salleh S, Muhammad A 2010 Am. J. Appl. Sci 7 807

    [3]

    Zhai Y H, Li P, Zhang G J, Luo Y X, Fan X, Hu B, Li J H, Zhang J, Shu P 2011 Acta Phys. Sin 60 088501 (in Chinese) [翟亚红, 李平, 张国俊, 罗玉香, 范雪, 胡滨, 李俊宏, 张健, 束平 2011 物理学报 60 088501]

    [4]

    Chen W 2017 Chin. Sci. Bull 62 967 (in Chinese) [陈伟 2017 科学通报 62 967]

    [5]

    Chen W, Yang H L, Guo X Q, Yao Z B, Ding L L, Wang Z J, Wang C H, Wang Z M, Cong P T 2017 Chin. Sci. Bull 62 978 (in Chinese) [陈伟, 杨海亮, 郭晓强, 姚志斌, 丁李利, 王祖军, 王晨辉, 王忠明, 丛培天 2017 科学通报 62 978]

    [6]

    Pease R L, Dunham G W, Seiler J E, Platteter D G, McClure S S 2007 IEEE Trans. Nucl. Sci 54 1049

    [7]

    Pease R L 2003 IEEE Trans. Nucl. Sci 50 539

    [8]

    Madhu K V, Kumar R, Ravindra M, Damle R 2008 Solid-State Electron 52 1237

    [9]

    Kulkarni S R, Ravindra M, Joshi G R, Damle R 2006 Nucl. Instr. Meth. Phys. Res. B 251 157

    [10]

    Kambour K E, Kouhestani C, Nguyen D D, Devine R A B 2016 J. Vac. Sci. Technol. B 34 1071

    [11]

    Hughart D R, Schrimpf R D, Fleetwood D M, Rowsey N L, Law M E, Tuttle B R, Pantelides S T 2012 IEEE Trans. Nucl. Sci 59 3087

    [12]

    Liu C M, Li X J, Geng H B, Yang D Z, He S Y 2012 Nucl. Instr. Meth. Phys. Res. A 670 6

    [13]

    Zheng Y Z, Lu W, Ren D Y, Wang Y Y, Guo Q, Yu X F, He C F 2009 Acta Phys. Sin 58 5560 (in Chinese) [郑玉展, 陆妩, 任迪远, 王义元, 郭旗, 余学锋, 何承发 2009 物理学报 58 5560]

    [14]

    Ma W Y, Wang Z K, Lu W, Xi S B, Guo Q, He C F, Wang X, Liu M H, Jiang K 2014 Acta Phys. Sin 63 116101 (in Chinese) [马武英, 王志宽, 陆妩, 席善斌, 郭旗, 何承发, 王信, 刘默寒, 姜柯 2014 物理学报 63 116101]

    [15]

    Shaneyfelt M R, Pease R L, Schwank J R, Maher M C, Hash G H, Fleetwood D M, Dodd P E, Reber C A, Witczak S C, Riewe L C, Hjalmarson H P, Banks J C, Doyle B L, Knapp J A 2002 IEEE Trans. Nucl. Sci 49 3171

    [16]

    Kosier S L, Schrimpf R D, Nowlin R N, Fleetwood D M, DeLaus M, Pease R L, Combs W E, Wei A, Chai F 1993 IEEE Trans. Nucl. Sci 40 1276

    [17]

    Koiser S L, Schrimpf R D, Wei A, Delaus M 1993 Bipolarbicoms Circuits & Technology Meeting 94 211

    [18]

    Li X J, Liu C M, Yang J Q, Zhao Y L, Liu G Q 2013 IEEE Trans. Nucl. Sci 60 3924

    [19]

    Li X J, Liu C M, Yang J Q 2015 IEEE Trans. Device Mater. Rel 15 258

    [20]

    Li X J, Yang J Q, Liu C M 2017 IEEE Trans. Nucl. Sci 64 1905

    [21]

    Shockley W, Read W T 1952 Phys Rev 87 835

    [22]

    Pease R L, Adell P C, Rax B G, Chen X J, Barnaby H J, Holbert K E, Hjalmarson H P 2008 IEEE Trans. Nucl. Sci 55 3169

    [23]

    Galloway K F, Pease R L, Schrimpf R D, Emily D W 2013 IEEE Trans. Nucl. Sci 60 1731

    [24]

    Rashkeev S N, Fleetwood D M, Schrimpf R D, Pantelides S T 2004 IEEE Trans. Nucl. Sci 51 3158

    [25]

    Tuttle B R, Hughart D R, Schrimpf R D, Fleetwood D M, Pantelides S T 2010 IEEE Trans. Nucl. Sci 57 3046

  • [1]

    Li X J, Geng H B, Lan M J, Yang D Z, He S Y, Liu C M 2010 Chin. Phys. B 19 066103

    [2]

    Pien C F, Amir H F A, Salleh S, Muhammad A 2010 Am. J. Appl. Sci 7 807

    [3]

    Zhai Y H, Li P, Zhang G J, Luo Y X, Fan X, Hu B, Li J H, Zhang J, Shu P 2011 Acta Phys. Sin 60 088501 (in Chinese) [翟亚红, 李平, 张国俊, 罗玉香, 范雪, 胡滨, 李俊宏, 张健, 束平 2011 物理学报 60 088501]

    [4]

    Chen W 2017 Chin. Sci. Bull 62 967 (in Chinese) [陈伟 2017 科学通报 62 967]

    [5]

    Chen W, Yang H L, Guo X Q, Yao Z B, Ding L L, Wang Z J, Wang C H, Wang Z M, Cong P T 2017 Chin. Sci. Bull 62 978 (in Chinese) [陈伟, 杨海亮, 郭晓强, 姚志斌, 丁李利, 王祖军, 王晨辉, 王忠明, 丛培天 2017 科学通报 62 978]

    [6]

    Pease R L, Dunham G W, Seiler J E, Platteter D G, McClure S S 2007 IEEE Trans. Nucl. Sci 54 1049

    [7]

    Pease R L 2003 IEEE Trans. Nucl. Sci 50 539

    [8]

    Madhu K V, Kumar R, Ravindra M, Damle R 2008 Solid-State Electron 52 1237

    [9]

    Kulkarni S R, Ravindra M, Joshi G R, Damle R 2006 Nucl. Instr. Meth. Phys. Res. B 251 157

    [10]

    Kambour K E, Kouhestani C, Nguyen D D, Devine R A B 2016 J. Vac. Sci. Technol. B 34 1071

    [11]

    Hughart D R, Schrimpf R D, Fleetwood D M, Rowsey N L, Law M E, Tuttle B R, Pantelides S T 2012 IEEE Trans. Nucl. Sci 59 3087

    [12]

    Liu C M, Li X J, Geng H B, Yang D Z, He S Y 2012 Nucl. Instr. Meth. Phys. Res. A 670 6

    [13]

    Zheng Y Z, Lu W, Ren D Y, Wang Y Y, Guo Q, Yu X F, He C F 2009 Acta Phys. Sin 58 5560 (in Chinese) [郑玉展, 陆妩, 任迪远, 王义元, 郭旗, 余学锋, 何承发 2009 物理学报 58 5560]

    [14]

    Ma W Y, Wang Z K, Lu W, Xi S B, Guo Q, He C F, Wang X, Liu M H, Jiang K 2014 Acta Phys. Sin 63 116101 (in Chinese) [马武英, 王志宽, 陆妩, 席善斌, 郭旗, 何承发, 王信, 刘默寒, 姜柯 2014 物理学报 63 116101]

    [15]

    Shaneyfelt M R, Pease R L, Schwank J R, Maher M C, Hash G H, Fleetwood D M, Dodd P E, Reber C A, Witczak S C, Riewe L C, Hjalmarson H P, Banks J C, Doyle B L, Knapp J A 2002 IEEE Trans. Nucl. Sci 49 3171

    [16]

    Kosier S L, Schrimpf R D, Nowlin R N, Fleetwood D M, DeLaus M, Pease R L, Combs W E, Wei A, Chai F 1993 IEEE Trans. Nucl. Sci 40 1276

    [17]

    Koiser S L, Schrimpf R D, Wei A, Delaus M 1993 Bipolarbicoms Circuits & Technology Meeting 94 211

    [18]

    Li X J, Liu C M, Yang J Q, Zhao Y L, Liu G Q 2013 IEEE Trans. Nucl. Sci 60 3924

    [19]

    Li X J, Liu C M, Yang J Q 2015 IEEE Trans. Device Mater. Rel 15 258

    [20]

    Li X J, Yang J Q, Liu C M 2017 IEEE Trans. Nucl. Sci 64 1905

    [21]

    Shockley W, Read W T 1952 Phys Rev 87 835

    [22]

    Pease R L, Adell P C, Rax B G, Chen X J, Barnaby H J, Holbert K E, Hjalmarson H P 2008 IEEE Trans. Nucl. Sci 55 3169

    [23]

    Galloway K F, Pease R L, Schrimpf R D, Emily D W 2013 IEEE Trans. Nucl. Sci 60 1731

    [24]

    Rashkeev S N, Fleetwood D M, Schrimpf R D, Pantelides S T 2004 IEEE Trans. Nucl. Sci 51 3158

    [25]

    Tuttle B R, Hughart D R, Schrimpf R D, Fleetwood D M, Pantelides S T 2010 IEEE Trans. Nucl. Sci 57 3046

  • [1] Li Xing-Ji, Lan Mu-Jie, Liu Chao-Ming, Yang Jian-Qun, Sun Zhong-Liang, Xiao Li-Yi, He Shi-Yu. The influence of bias conditions on ionizing radiation damage of NPN and PNP transistors. Acta Physica Sinica, 2013, 62(9): 098503. doi: 10.7498/aps.62.098503
    [2] Dong Lei, Yang Jian-Qun, Zhen Zhao-Feng, Li Xing-Ji. Effects of pre-irradiated thermal treatment on ideal factor of excess base current in bipolar transistors. Acta Physica Sinica, 2020, 69(1): 018502. doi: 10.7498/aps.69.20191151
    [3] Chai Chang-Chun, Xi Xiao-Wen, Ren Xing-Rong, Yang Yin-Tang, Ma Zhen-Yang. The damage effect and mechanism of the bipolar transistor induced by the intense electromagnetic pulse. Acta Physica Sinica, 2010, 59(11): 8118-8124. doi: 10.7498/aps.59.8118
    [4] Ren Xing-Rong, Chai Chang-Chun, Ma Zhen-Yang, Yang Yin-Tang, Qiao Li-Ping, Shi Chun-Lei. The damage effect and mechanism of bipolar transistors induced by injection of electromagnetic pulse from the base. Acta Physica Sinica, 2013, 62(6): 068501. doi: 10.7498/aps.62.068501
    [5] Ma Zhen-Yang, Chai Chang-Chun, Ren Xing-Rong, Yang Yin-Tang, Qiao Li-Ping, Shi Chun-Lei. The damage effect and mechanism of the bipolar transistor induced by different types of high power microwaves. Acta Physica Sinica, 2013, 62(12): 128501. doi: 10.7498/aps.62.128501
    [6] Li Duo-Fang, Cao Tian-Guang, Geng Jin-Peng, Zhan Yong. Damage-repair model for mutagenic effects of plant induced by ionizing radiation. Acta Physica Sinica, 2015, 64(24): 248701. doi: 10.7498/aps.64.248701
    [7] Ma Zhen-Yang, Chai Chang-Chun, Ren Xing-Rong, Yang Yin-Tang, Chen Bin. The damage effect and mechanism of the bipolar transistor caused by microwaves. Acta Physica Sinica, 2012, 61(7): 078501. doi: 10.7498/aps.61.078501
    [8] Liu Yuan, Chen Hai-Bo, He Yu-Juan, Wang Xin, Yue Long, En Yun-Fei, Liu Mo-Han. Radiation effects on the low frequency noise in partially depleted silicon on insulator transistors. Acta Physica Sinica, 2015, 64(7): 078501. doi: 10.7498/aps.64.078501
    [9] Xiao De-Long, Ning Cheng, Lan Ke, Ding Ning. Preliminary studies on the mechanism of radiation production in aluminum wire array Z-pinch implosion. Acta Physica Sinica, 2010, 59(1): 430-437. doi: 10.7498/aps.59.430
    [10] Liu Gui-Li. Electronic theoretical study on the corrosion and passivation mechanism of Ti metal. Acta Physica Sinica, 2008, 57(7): 4441-4445. doi: 10.7498/aps.57.4441
    [11] Zheng Xue, Yu Xue-Gong, Yang De-Ren. Passivation property of -Si:H/SiNx stack-layer film in crystalline silicon solar cells. Acta Physica Sinica, 2013, 62(19): 198801. doi: 10.7498/aps.62.198801
    [12] Xue Yuan, Gao Chao-Jun, Gu Jin-Hua, Feng Ya-Yang, Yang Shi-E, Lu Jing-Xiao, Huang Qiang, Feng Zhi-Qiang. Study on the properties and optical emission spectroscopy of the intrinsic silicon thin film in silicon heterojunction solar cells. Acta Physica Sinica, 2013, 62(19): 197301. doi: 10.7498/aps.62.197301
    [13] Zhao Jin-Yu, Yang Jian-Qun, Dong Lei, Li Xing-Ji. Hydrogen soaking irradiation acceleration method: application to and damage mechanism analysis on 3DG111 transistors. Acta Physica Sinica, 2019, 68(6): 068501. doi: 10.7498/aps.68.20181992
    [14] Li Xing-Ji, Liu Chao-Ming, Sun Zhong-Liang, Lan Mu-Jie, Xiao Li-Yi, He Shi-Yu. Radiation damage induced by various particles on CC4013 devices. Acta Physica Sinica, 2013, 62(5): 058502. doi: 10.7498/aps.62.058502
    [15] Zhou Yue, Hu Zhi-Yuan, Bi Da-Wei, Wu Ai-Min. Progress of radiation effects of silicon photonics devices. Acta Physica Sinica, 2019, 68(20): 204206. doi: 10.7498/aps.68.20190543
    [16] Ma Jing, Che Chi, Yu Si-Yuan, Tan Li-Ying, Zhou Yan-Ping, Wang Jian. -radiation damage of fiber Bragg grating and its effects on reflected spectrum characteristics. Acta Physica Sinica, 2012, 61(6): 064201. doi: 10.7498/aps.61.064201
    [17] He Bao-Ping, Yao Zhi-Bin. Research on prediction model of radiation effect for complementary metal oxide semiconductor devices at low dose rate irradiation in space environment. Acta Physica Sinica, 2010, 59(3): 1985-1990. doi: 10.7498/aps.59.1985
    [18] Bi Zhi-Wei, Feng Qian, Hao Yue, Yue Yuan-Zheng, Zhang Zhong-Fen, Mao Wei, Yang Li-Yuan, Hu Gui-Zhou. Effect of Al2O3 dielectric layer thickness on the AlGaN/GaN metal-oxide-semiconductor higher-electron-mobility transistor characteristics. Acta Physica Sinica, 2009, 58(10): 7211-7215. doi: 10.7498/aps.58.7211
    [19] Zhou Hang, Zheng Qi-Wen, Cui Jiang-Wei, Yu Xue-Feng, Guo Qi, Ren Di-Yuan, Yu De-Zhao, Su Dan-Dan. Enhanced channel hot carrier effect of 0.13 m silicon-on-insulator N metal-oxide-semiconductor field-effect transistor induced by total ionizing dose effect. Acta Physica Sinica, 2016, 65(9): 096104. doi: 10.7498/aps.65.096104
    [20] Zhang Guo-Ying, Zhang Hui, Liu Yan-Xia, Yang Li-Na. The electronic theory study of the influence of Pd on the passivation of Ti alloys. Acta Physica Sinica, 2008, 57(4): 2404-2408. doi: 10.7498/aps.57.2404
  • Citation:
Metrics
  • Abstract views:  1005
  • PDF Downloads:  64
  • Cited By: 0
Publishing process
  • Received Date:  09 October 2017
  • Accepted Date:  23 May 2018
  • Published Online:  20 August 2019

Impact of nitride passivation layer on ionizing irradiation damage on LPNP bipolar transistors

    Corresponding author: Li Xing-Ji, lxj0218@hit.edu.cn
  • 1. Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 11575049).

Abstract: Bipolar junction transistors (BJTs) are generally employed in spacecraft, due to their current drive capability, linearity and excellent matching characteristics. High-energy particles and cosmic rays in space environment remarkably affect electronic devices, especially in BJTs producing total ionizing dose, displacement damage or single event effect. Among them, ionizing irradiation effects on BJTs dominates. For BJTs, ionization damage can induce the oxide trapped charges in SiO2 layer and interface traps in Si/SiO2, resulting in more recombination base current and the degradation of current gain. Consequently, the accumulation of both oxide charges and interface traps causes an increase in the base current.#br#Passivation layer is also an important factor of the irradiation effects of BJTs. Previous works only studied the degradation of electrical properties of the devices with/without passivation layer induced by irradiation, and did not give an influence mechanisms of passivation layer on the irradiation respond of devices. Therefore, the irradiation damage mechanisms of the BJTs with or without nitride passivation layer are not clear so far.#br#In this paper, the impact of Si3N4 passivation layer on ionizing irradiation damage on lateral PNP bipolar transistors (LPNP) was studied by using 60Co gamma irradiation source. The KEITHLEY 4200-SCS semiconductor parameter analyzer was used to measure the relationship between the electrical properties of LPNP transistors and ionization dose, including the Gummel characteristics, the degradation of current gain, etc. The irradiation defects of the LPNP transistors with/without passivation layer structure were analyzed by the deep level transient spectroscopy (DLTS). The experimental results show that the electrical properties of the LPNP transistors with and without passivation layer exhibit similar characteristics. For all samples, the base current increases with increasing the total dose, while the collector current does not almost change. Compared with the LPNP transistors without Si3N4 passivation layer, the degradation of LPNP transistor with Si3N4 passivation layer is severe.#br#Based on the excess base current as a function of base-emitter voltage for the LPNP transistors with/without nitride passivation layer, the degradation of bipolar transistors with nitride passivation layer is severe under the same irradiation conditions. The DLTS analyses show that compared with the bipolar transistors without nitride passivation layer, the signal peak located at about 300 K is shifted to low temperature for the bipolar transistors with nitride passivation layer. The above results show that the LPNP transistors with nitride passivation could produce a large number of interface states with the energy level is closer to the middle of the forbidden band during the irradiation, which is attributed to a large number of hydrogen presence during the processing of fabricated passivation layer.

Reference (25)

Catalog

    /

    返回文章
    返回