Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental investigation of angular anisoplanatism for sodium beacon

Luo Xi Li Xin-Yang Hu Shi-Jie Huang Kui Wang Xiao-Yun

Experimental investigation of angular anisoplanatism for sodium beacon

Luo Xi, Li Xin-Yang, Hu Shi-Jie, Huang Kui, Wang Xiao-Yun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • To understand the characteristics of the anisoplanatic error resulting from different return-light experiences between the sodium beacon with a greater angular offset and the science object through atmospheric turbulence, the angular anisoplanatism for sodium beacon is investigated experimentally based on the technique of synchronized range gating. The return-light spot arrays through turbulent atmosphere from the natural star and the sodium beacon with 50 rad angular offsets are synchronously collected by using a single Hartmann wavefront sensor, consequently the synchronous turbulence-induced wavefront distortion sequences are recovered for the on-axis natural star and the off-axis sodium beacon. According to the experimental data, the temporal correlations of the wavefront distributions and decomposed Zernike modes between the on-axis natural star and the off-axis sodium beacon are discussed. By comparing the off-axis sodium beacon with the on-axis natural star, we analyse the statistics of the acquired angular anisoplanatism error and its associated Zernike-modal variances for the off-axis sodium beacon, and derive the Zernike-modal relative anisoplanatic errors as well. Furthermore, the influence of the acquired angular anisoplanatism error on the quality of imaging point spread function (PSF) is studied. The experimental results show that the existence of 50 rad angular deviation between the sodium beacon and the natural star causes that there are a certain correlation between just low-order Zernike modes of these two types of wavefronts (e.g. from the 3rd order to the 9th order), but the correlations between other high-order Zernike modes of these two types of wavefronts are severely degenerated and even these modes are de-correlated, resulting from the improper turbulence probing with off-axis sodium beacon off the ray path from the natural star to the telescope aperture. The angular anisoplanatism error has a great influence on the quality of imaging PSF, which leads to a degradation of Strehl ratio of 0.31-0.22 and beam quality factor of 2.70-3.35. Therefore, the influence may not to be ignored. At the end of this paper, according to the derived experimental turbulence coherence length and the generalized Hufnagel-Valley model, we calculate the theoretical anisoplanatic phase variance for the sodium beacon with 50 rad angular offsets, which is in good accordance with the measured anisoplanatic phase variance. This investigation is useful in promoting our knowledge of sodium beacon angular anisoplanatism effect on turbulence probing.
      Corresponding author: Luo Xi, luoxi@ioe.ac.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61505215).
    [1]

    Foy R, Labeyrie A 1991 Nature 353 144

    [2]

    Fugate R Q, Fried D L, Ameer G A, Boeke B R, Browne S L, Roberts P H, Ruane R E, Tyler G A, Wopat L M 1991 Nature 353 144

    [3]

    Humphreys R A, Primmerman C A, Bradley L C, Herrmann J 1991 Opt. Lett. 16 1367

    [4]

    Humphreys R A, Bradley L C, Herrmann J 1992 Lincoln. Lab. J. 5 45

    [5]

    Xu Z Y, Bo Y, Peng Q J, Zhang Y D, Wei K, Xue S J, Feng L 2016 Infrared Laser Eng. 45 0101001 (in Chinese) [许祖彦, 薄勇, 彭钦军, 张雨东, 魏凯, 薛随建, 冯麓 2016 红外与激光工程 45 0101001]

    [6]

    Sasiela R J 2007 Electromagnetic Wave Propagation in TurbulenceEvaluation and Application of Mellin Transforms (2nd Ed.) (Bellingham: SPIE Press) p69

    [7]

    Molodij G, Rousset G 1997 J. Opt. Soc. Am. A 14 1949

    [8]

    Shen F, Jiang W H 2003 Acta Opt. Sin. 23 348 (in Chinese) [沈锋, 姜文汉 2003 光学学报 23 348]

    [9]

    Wan M, Su Y, Xiang R J 2001 High Power Laser Part Beams 13 282 (in Chinese) [万敏, 苏毅, 向汝建 2001 强激光与粒子束 13 282]

    [10]

    Yan H X, Wu H L, Li S S, Chen S 2005 Proceedings of SPIE Anstronomical Adaptive Optics Systems and Applications Ⅱ San Diego, California, USA, August 3-4, 2005 p59030U

    [11]

    Luo X, Li X Y, Shao L, Hu S J, Huang K 2014 Proceedings of SPIE XX International Symposium on High-Power Laser Systems and Applications Chengdu, China, August 25-29, 2014 p92553A

    [12]

    Luo X, Li X Y 2014 Chin. J. Lasers 41 0612002 (in Chinese) [罗曦, 李新阳 2014 中国激光 41 0612002]

    [13]

    Luo X, Li X Y, Shao L, Huang K, Wang X Y 2014 Chin. J. Lasers 41 0612003 (in Chinese) [罗曦, 李新阳, 邵力, 黄奎, 王晓云 2014 中国激光 41 0612003]

    [14]

    Dam M A V, Sasiela R J, Bouchez A H, Mignant D L, Campbell R D, Chin J C Y, Hartman S K, Johansson E M, Lafon R E, Stomski P J, Summers D M, Wizinowich P L 2006 Proceedings of SPIE Advances in Adaptive Optics Ⅱ Orlando, Florida, USA, May 24, 2006 p627231

    [15]

    Zhou W C, Hu X Y, Yun Y, Tian X Q, Huang D Q 2014 Infrared Laser Eng. 43 1943 (in Chinese) [周文超, 胡晓阳, 云宇, 田小强, 黄德权 2014 红外与激光工程 43 1943]

    [16]

    Chen T J, Zhou W C, Wang F, Huang D Q, Lu Y H, Zhang J Z 2015 Acta Phys. Sin. 64 134207 (in Chinese) [陈天江, 周文超, 王锋, 黄德权, 鲁燕华, 张建柱 2015 物理学报 64 134207]

    [17]

    Hardy J W 1998 Adaptive Optics for Astronomical Telescopes (Oxford, New York USA: Oxford University Press) p85

    [18]

    Sasiela R J 2007 Electromagnetic Wave Propagation in TurbulenceEvaluation and Application of Mellin Transforms (2nd Ed.) (Bellingham, Washington USA: SPIE Press) p62

    [19]

    Li X Y, Wang C H, Xian H, Li M, Li M Q, Ren S H, Zhou L C, Wang X Y 2005 China Patent CN1570570A (in Chinsese) [李新阳, 王春鸿, 鲜浩, 李梅, 李明全, 任绍恒, 周璐春, 王晓云 2005 中国发明专利 CN1570570A]

    [20]

    Du X W 1997 Chin. J. Lasers 24 327 (in Chinese) [杜祥琬 1997 中国激光 24 327]

    [21]

    Du X W 2010 High Power Laser Part Beams 22 945 (in Chinese) [杜祥琬 2010 强激光与粒子束 22 945]

    [22]

    Li X Y, Luo X, Shao L, Huang K, Hu S J, Tian Y, Li M 2013 China Patent CN103335950A (in Chinese) [李新阳, 罗曦, 邵力, 黄奎, 胡诗杰, 田雨, 李敏 2013 中国发明专利 CN103335950A]

  • [1]

    Foy R, Labeyrie A 1991 Nature 353 144

    [2]

    Fugate R Q, Fried D L, Ameer G A, Boeke B R, Browne S L, Roberts P H, Ruane R E, Tyler G A, Wopat L M 1991 Nature 353 144

    [3]

    Humphreys R A, Primmerman C A, Bradley L C, Herrmann J 1991 Opt. Lett. 16 1367

    [4]

    Humphreys R A, Bradley L C, Herrmann J 1992 Lincoln. Lab. J. 5 45

    [5]

    Xu Z Y, Bo Y, Peng Q J, Zhang Y D, Wei K, Xue S J, Feng L 2016 Infrared Laser Eng. 45 0101001 (in Chinese) [许祖彦, 薄勇, 彭钦军, 张雨东, 魏凯, 薛随建, 冯麓 2016 红外与激光工程 45 0101001]

    [6]

    Sasiela R J 2007 Electromagnetic Wave Propagation in TurbulenceEvaluation and Application of Mellin Transforms (2nd Ed.) (Bellingham: SPIE Press) p69

    [7]

    Molodij G, Rousset G 1997 J. Opt. Soc. Am. A 14 1949

    [8]

    Shen F, Jiang W H 2003 Acta Opt. Sin. 23 348 (in Chinese) [沈锋, 姜文汉 2003 光学学报 23 348]

    [9]

    Wan M, Su Y, Xiang R J 2001 High Power Laser Part Beams 13 282 (in Chinese) [万敏, 苏毅, 向汝建 2001 强激光与粒子束 13 282]

    [10]

    Yan H X, Wu H L, Li S S, Chen S 2005 Proceedings of SPIE Anstronomical Adaptive Optics Systems and Applications Ⅱ San Diego, California, USA, August 3-4, 2005 p59030U

    [11]

    Luo X, Li X Y, Shao L, Hu S J, Huang K 2014 Proceedings of SPIE XX International Symposium on High-Power Laser Systems and Applications Chengdu, China, August 25-29, 2014 p92553A

    [12]

    Luo X, Li X Y 2014 Chin. J. Lasers 41 0612002 (in Chinese) [罗曦, 李新阳 2014 中国激光 41 0612002]

    [13]

    Luo X, Li X Y, Shao L, Huang K, Wang X Y 2014 Chin. J. Lasers 41 0612003 (in Chinese) [罗曦, 李新阳, 邵力, 黄奎, 王晓云 2014 中国激光 41 0612003]

    [14]

    Dam M A V, Sasiela R J, Bouchez A H, Mignant D L, Campbell R D, Chin J C Y, Hartman S K, Johansson E M, Lafon R E, Stomski P J, Summers D M, Wizinowich P L 2006 Proceedings of SPIE Advances in Adaptive Optics Ⅱ Orlando, Florida, USA, May 24, 2006 p627231

    [15]

    Zhou W C, Hu X Y, Yun Y, Tian X Q, Huang D Q 2014 Infrared Laser Eng. 43 1943 (in Chinese) [周文超, 胡晓阳, 云宇, 田小强, 黄德权 2014 红外与激光工程 43 1943]

    [16]

    Chen T J, Zhou W C, Wang F, Huang D Q, Lu Y H, Zhang J Z 2015 Acta Phys. Sin. 64 134207 (in Chinese) [陈天江, 周文超, 王锋, 黄德权, 鲁燕华, 张建柱 2015 物理学报 64 134207]

    [17]

    Hardy J W 1998 Adaptive Optics for Astronomical Telescopes (Oxford, New York USA: Oxford University Press) p85

    [18]

    Sasiela R J 2007 Electromagnetic Wave Propagation in TurbulenceEvaluation and Application of Mellin Transforms (2nd Ed.) (Bellingham, Washington USA: SPIE Press) p62

    [19]

    Li X Y, Wang C H, Xian H, Li M, Li M Q, Ren S H, Zhou L C, Wang X Y 2005 China Patent CN1570570A (in Chinsese) [李新阳, 王春鸿, 鲜浩, 李梅, 李明全, 任绍恒, 周璐春, 王晓云 2005 中国发明专利 CN1570570A]

    [20]

    Du X W 1997 Chin. J. Lasers 24 327 (in Chinese) [杜祥琬 1997 中国激光 24 327]

    [21]

    Du X W 2010 High Power Laser Part Beams 22 945 (in Chinese) [杜祥琬 2010 强激光与粒子束 22 945]

    [22]

    Li X Y, Luo X, Shao L, Huang K, Hu S J, Tian Y, Li M 2013 China Patent CN103335950A (in Chinese) [李新阳, 罗曦, 邵力, 黄奎, 胡诗杰, 田雨, 李敏 2013 中国发明专利 CN103335950A]

  • [1] Zhang Yan-Yan, Chen Su-Ting, Ge Jun-Xiang, Wan Fa-Yu, Mei Yong, Zhou Xiao-Yan. Removal of additive noise in adaptive optics system based on adaptive nonconvex sparse regularization. Acta Physica Sinica, 2017, 66(12): 129501. doi: 10.7498/aps.66.129501
    [2] Wang Feng, Chen Tian-Jiang, Luo Zhong-Xiang, Lu Yan-Hua, Wan Min, Peng Bo, Yin Xin-Qi. Experimental study on backscattering characteristics of sodium beacon based on a long pulse laser. Acta Physica Sinica, 2014, 63(1): 014208. doi: 10.7498/aps.63.014208
    [3] Liu Xiang-Yuan, Qian Xian-Mei, Zhang Sui-Meng, Cui Chao-Long. Numerical calculation and discussion on the return photon number of sodium laser beacon excited by a macro-micro pulse laser. Acta Physica Sinica, 2015, 64(9): 094206. doi: 10.7498/aps.64.094206
    [4] Xian Hao, Jiang Wen-Han, Rao Chang-Hui, Li Chao-Hong. Analysis of wavefront measuring method for daytime adaptive optics. Acta Physica Sinica, 2007, 56(7): 4289-4296. doi: 10.7498/aps.56.4289
    [5] Liu Zhang-Wen, Li Zheng-Dong, Zhou Zhi-Qiang, Yuan Xue-Wen. Adaptive optics correction technique based onfuzzy control. Acta Physica Sinica, 2016, 65(1): 014206. doi: 10.7498/aps.65.014206
    [6] Rao Chang-Hui, Li Mei, Zhang Yan-Yan, Ma Xiao-Yu. The detection error analysis of Hartmann-Shack wavefront sensor based on electron multiplying charge-coupled devices. Acta Physica Sinica, 2010, 59(8): 5904-5913. doi: 10.7498/aps.59.5904
    [7] Liu Chao, Hu Li-Fa, Mu Quan-Quan, Cao Zhao-Liang, Hu Hong-Bin, Zhang Xing-Yun, Lu Yong-Jun, Xuan Li. Modal prediction for open-loop liquid-crystal adaptive optics systems. Acta Physica Sinica, 2012, 61(12): 129501. doi: 10.7498/aps.61.129501
    [8] Guo You-Ming, Ma Xiao-Yu, Rao Chang-Hui. Optimal closed-loop bandwidth of tip-tilt correction loop in adaptive optics system. Acta Physica Sinica, 2014, 63(6): 069502. doi: 10.7498/aps.63.069502
    [9] Rao Chang-Hui, Bai Fu-Zhong. Effect of pinhole diameter on correction accuracy of closed-loop adaptive optics system using self-referencing interferometer wavefront sensor. Acta Physica Sinica, 2010, 59(11): 8280-8286. doi: 10.7498/aps.59.8280
    [10] Guo You-Ming, Rao Chang-Hui, Bao Hua, Zhang Ang, Wei Kai. Direct computation of the interaction matrix of adaptive optical system. Acta Physica Sinica, 2014, 63(14): 149501. doi: 10.7498/aps.63.149501
    [11] Jian Xiao-Hua, Cui Yao-Yao, Xiang Yong-Jia, Han Zhi-Le. Adaptive optics multispectral photoacoustic imaging. Acta Physica Sinica, 2012, 61(21): 217801. doi: 10.7498/aps.61.217801
    [12] Tang Yan-Qiu, Sun Qiang, Zhao Jian, Yao Kai-Nan. A closed-loop aberration compensating method of optics system based on holography. Acta Physica Sinica, 2015, 64(2): 024206. doi: 10.7498/aps.64.024206
    [13] Chen Tian-Jiang, Zhou Wen-Chao, Wang Feng, Huang De-Quan, Lu Yan-Hua, Zhang Jian-Zhu. Experimental research on focusing anisoplanatism of sodium guide star via synchronous pulse detection. Acta Physica Sinica, 2015, 64(13): 134207. doi: 10.7498/aps.64.134207
    [14] Ling Ning, Jiang Wen-Han, Cai Dong-Mei. The performance of phase-only liquid crystal spatial light modulator used for generating Zernike terms. Acta Physica Sinica, 2008, 57(2): 897-903. doi: 10.7498/aps.57.897
    [15] Rao Chang-Hui, Jiang Wen-Han, Ning Yu, Yu Hao, Zhou Hong. Performance test and closed-loop correction experiment of a 20-element bimorph deformable mirror. Acta Physica Sinica, 2009, 58(7): 4717-4723. doi: 10.7498/aps.58.4717
    [16] Rao Chang-Hui, Bai Fu-Zhong. Effect of pinhole diameter on measurement accuracy of self-referencing interferometer wavefront sensor. Acta Physica Sinica, 2010, 59(6): 4056-4064. doi: 10.7498/aps.59.4056
    [17] He Yi, Zhang Yu-Dong, Lu Jing, Li Hao, Shi Guo-Hua. Superresolution in adaptive optics confocal scanning laser ophthalmoscope. Acta Physica Sinica, 2011, 60(3): 034207. doi: 10.7498/aps.60.034207
    [18] Liu Chao, Hu Li-Fa, Cao Zhao-Liang, Mu Quan-Quan, Peng Zeng-Hui, Xuan Li. Dynamic wavefront correction with a fast liquid-crystal on silicon device of pure phase. Acta Physica Sinica, 2012, 61(8): 089501. doi: 10.7498/aps.61.089501
    [19] Wang Yu-Yu, Gao Yan-Qi, Zhu Hai-Dong, Lu Xing-Hua, Zhang Jun-Yong, Guo Ya-Jing, Hui Hong-Chao, Zhu Bao-Qiang. Auto-alignment in four-pass amplifier with wavefront correction system. Acta Physica Sinica, 2013, 62(5): 055201. doi: 10.7498/aps.62.055201
    [20] Fan Mu-Wen, Huang Lin-Hai, Li Mei, Rao Chang-Hui. High-bandwidth control of piezoelectric steering mirror for suppression of laser beam jitter. Acta Physica Sinica, 2016, 65(2): 024209. doi: 10.7498/aps.65.024209
  • Citation:
Metrics
  • Abstract views:  485
  • PDF Downloads:  86
  • Cited By: 0
Publishing process
  • Received Date:  19 December 2017
  • Accepted Date:  31 January 2018
  • Published Online:  05 May 2018

Experimental investigation of angular anisoplanatism for sodium beacon

    Corresponding author: Luo Xi, luoxi@ioe.ac.cn
  • 1. Laboratory on Adaptive Optics, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China;
  • 2. Key Laboratory on Adaptive Optics, Chinese Academy of Sciences, Chengdu 610209, China
Fund Project:  Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61505215).

Abstract: To understand the characteristics of the anisoplanatic error resulting from different return-light experiences between the sodium beacon with a greater angular offset and the science object through atmospheric turbulence, the angular anisoplanatism for sodium beacon is investigated experimentally based on the technique of synchronized range gating. The return-light spot arrays through turbulent atmosphere from the natural star and the sodium beacon with 50 rad angular offsets are synchronously collected by using a single Hartmann wavefront sensor, consequently the synchronous turbulence-induced wavefront distortion sequences are recovered for the on-axis natural star and the off-axis sodium beacon. According to the experimental data, the temporal correlations of the wavefront distributions and decomposed Zernike modes between the on-axis natural star and the off-axis sodium beacon are discussed. By comparing the off-axis sodium beacon with the on-axis natural star, we analyse the statistics of the acquired angular anisoplanatism error and its associated Zernike-modal variances for the off-axis sodium beacon, and derive the Zernike-modal relative anisoplanatic errors as well. Furthermore, the influence of the acquired angular anisoplanatism error on the quality of imaging point spread function (PSF) is studied. The experimental results show that the existence of 50 rad angular deviation between the sodium beacon and the natural star causes that there are a certain correlation between just low-order Zernike modes of these two types of wavefronts (e.g. from the 3rd order to the 9th order), but the correlations between other high-order Zernike modes of these two types of wavefronts are severely degenerated and even these modes are de-correlated, resulting from the improper turbulence probing with off-axis sodium beacon off the ray path from the natural star to the telescope aperture. The angular anisoplanatism error has a great influence on the quality of imaging PSF, which leads to a degradation of Strehl ratio of 0.31-0.22 and beam quality factor of 2.70-3.35. Therefore, the influence may not to be ignored. At the end of this paper, according to the derived experimental turbulence coherence length and the generalized Hufnagel-Valley model, we calculate the theoretical anisoplanatic phase variance for the sodium beacon with 50 rad angular offsets, which is in good accordance with the measured anisoplanatic phase variance. This investigation is useful in promoting our knowledge of sodium beacon angular anisoplanatism effect on turbulence probing.

Reference (22)

Catalog

    /

    返回文章
    返回