Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical simulation of effect of pump distribution on spherical aberration of end-pumped laser

Yao Qiang-Qiang Wang Qi-Han Feng Chi Chen Si Jin Guang-Yong Dong Yuan

Numerical simulation of effect of pump distribution on spherical aberration of end-pumped laser

Yao Qiang-Qiang, Wang Qi-Han, Feng Chi, Chen Si, Jin Guang-Yong, Dong Yuan
PDF
Get Citation
  • In order to study the spherical aberration of thermal lens when the laser crystal is pumped with the pump light distributed differently and the pump light under the end-pumping condition, in this paper we establish a single-ended pump and constant temperature thermal model to analyze the working characteristics of the Nd:YVO4 crystal. The steady state heat conduction equation and Zernike polynomials are solved, and the relationship between thermal spherical aberration and distribution of pump laser is established. The model is used in simulation, and the simulation results are further analyzed theoretically, showing that under the same pump power, the spherical aberration is greatest when the pump beam is of 2-order super-Gaussian distribution. The spherical aberration decreases with the increase of pump distribution coefficient k (except the Gaussian distribution). With the increase of pump power, the influence of pump distribution coefficient k on spherical aberration is aggravated gradually, and the difference in spherical aberration caused by different values of distribution coefficient k increases gradually. The range of strongest laser power of the 2-order super-Gaussian distribution pump is analyzed and simulated. Under same pump power, the maximum range of the strongest laser power of 2-order super-Gaussian distribution pump is 0.3-0.63 times the Gauss radius. The research methods and conclusions obtained in this paper have universal applicability and can be used for quantitatively analyzing the temperature distributions, thermal deformations, optical path difference distributions, and spherical aberration distributions of other laser crystals. At the same time, this study also provides a theoretical reference for improving spherical aberration from the perspective of changing the distribution of pump light and the laser output characteristics.
      Corresponding author: Dong Yuan, laser_dongyuan@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61505012).
    [1]

    Neubert B J, Eppich B 2005 Opt. Commun. 250 241

    [2]

    Brickus D, Dementev A S 2016 Lith. J. Phys. 56 2

    [3]

    Bonnefois A M, Gilbert M, Thro P Y, Weulerssse J M 2006 Opt. Commun. 259 223

    [4]

    Liu C, Riesbeck T, Wang X, Ge J, Xiang Z 2008 Opt. Commun. 281 5222

    [5]

    Song X L, Li B B, Guo Z, Wang S Y, Cai D F, Wen J G 2009 Opt. Commun. 282 4779

    [6]

    Ji X L, Tao X Y, L B D 2004 Acta Phys. Sin. 53 952 (in Chinese)[季小玲, 陶向阳, 吕百达 2004 物理学报 53 952]

    [7]

    Liu C, Ge J H, Xiang Z, Chen J 2008 Acta Phys. Sin. 57 1704 (in Chinese)[刘崇, 葛剑虹, 项震, 陈军 2008 物理学报 57 1704]

    [8]

    Zhao Z G, Dong Y T, Pan S Q, Liu C, Ge J H, Xiang Z, Chen J, Mao Q M 2010 Chinese J. Lasers 37 2409 (in Chinese)[赵智刚, 董延涛, 潘孙强, 刘崇, 葛剑虹, 项震, 陈军, 毛谦敏 2010 中国激光 37 2409]

    [9]

    Yaakov L, Inon M, Steven J, Avi M 2010 J. Opt. Soc. Am. B 27 1337

    [10]

    Senatsky Y, Bisson J F, Shelobolin A, Shirakawa A, Ueda K 2009 Laser Phys. 19 911

    [11]

    Shi P, Chen W, Li L, Gan A 2007 Appl. Opt. 46 4046

    [12]

    Tereshchenko S A, Podgaetshii V M, Gerasimenko A Y, Savelev M S 2015 IEEE J. Quantum Elect. 45 315

    [13]

    Innocenzi M E, Yura H T, Fincher C L, Fields R A 1990 Appl. Phys. Lett. 56 1831

    [14]

    Liu X W 2009 M. S. Thesis (Xian:Xidian University) (in Chinese)[刘学文 2009 硕士学位论文 (西安:西安电子科技大学)]

    [15]

    Kwon Y K, Zhou F 2003 Opt. Eng. 42 1787

    [16]

    Gerber M, Graf T 2003 IEEE J. Quantum Elect. 40 741

    [17]

    Nadgaran H, Sabaian M 2006 Paramana J. Phys. 67 1119

    [18]

    Gan A, Li L, Shi P, Chen W 2007 Appl. Opt. 46 4046

    [19]

    We X Y, Yu X 1994 Acta Optica Sin. 14 718 (in Chinese)[魏学业, 俞信 1994 光学学报 14 718]

    [20]

    Duan H F, Yang Z P, Wang S Q, Zhang Y D 2002 Chinese J. Lasers 29 517 (in Chinese)[段海峰, 杨泽平, 王淑青, 张雨东 2002 中国激光 29 517]

    [21]

    Yao Q Q, Dong Y, Wang Q H, Jin G Y 2018 Appl. Opt. 57 2245

    [22]

    Feng X X, Zhang L Y, Ye N, Yang B W 2012 Acta Optica Sin. 32 0512002 (in Chinese)[冯新星, 张丽艳, 叶南, 杨博文 2012 光学学报 32 0512002]

  • [1]

    Neubert B J, Eppich B 2005 Opt. Commun. 250 241

    [2]

    Brickus D, Dementev A S 2016 Lith. J. Phys. 56 2

    [3]

    Bonnefois A M, Gilbert M, Thro P Y, Weulerssse J M 2006 Opt. Commun. 259 223

    [4]

    Liu C, Riesbeck T, Wang X, Ge J, Xiang Z 2008 Opt. Commun. 281 5222

    [5]

    Song X L, Li B B, Guo Z, Wang S Y, Cai D F, Wen J G 2009 Opt. Commun. 282 4779

    [6]

    Ji X L, Tao X Y, L B D 2004 Acta Phys. Sin. 53 952 (in Chinese)[季小玲, 陶向阳, 吕百达 2004 物理学报 53 952]

    [7]

    Liu C, Ge J H, Xiang Z, Chen J 2008 Acta Phys. Sin. 57 1704 (in Chinese)[刘崇, 葛剑虹, 项震, 陈军 2008 物理学报 57 1704]

    [8]

    Zhao Z G, Dong Y T, Pan S Q, Liu C, Ge J H, Xiang Z, Chen J, Mao Q M 2010 Chinese J. Lasers 37 2409 (in Chinese)[赵智刚, 董延涛, 潘孙强, 刘崇, 葛剑虹, 项震, 陈军, 毛谦敏 2010 中国激光 37 2409]

    [9]

    Yaakov L, Inon M, Steven J, Avi M 2010 J. Opt. Soc. Am. B 27 1337

    [10]

    Senatsky Y, Bisson J F, Shelobolin A, Shirakawa A, Ueda K 2009 Laser Phys. 19 911

    [11]

    Shi P, Chen W, Li L, Gan A 2007 Appl. Opt. 46 4046

    [12]

    Tereshchenko S A, Podgaetshii V M, Gerasimenko A Y, Savelev M S 2015 IEEE J. Quantum Elect. 45 315

    [13]

    Innocenzi M E, Yura H T, Fincher C L, Fields R A 1990 Appl. Phys. Lett. 56 1831

    [14]

    Liu X W 2009 M. S. Thesis (Xian:Xidian University) (in Chinese)[刘学文 2009 硕士学位论文 (西安:西安电子科技大学)]

    [15]

    Kwon Y K, Zhou F 2003 Opt. Eng. 42 1787

    [16]

    Gerber M, Graf T 2003 IEEE J. Quantum Elect. 40 741

    [17]

    Nadgaran H, Sabaian M 2006 Paramana J. Phys. 67 1119

    [18]

    Gan A, Li L, Shi P, Chen W 2007 Appl. Opt. 46 4046

    [19]

    We X Y, Yu X 1994 Acta Optica Sin. 14 718 (in Chinese)[魏学业, 俞信 1994 光学学报 14 718]

    [20]

    Duan H F, Yang Z P, Wang S Q, Zhang Y D 2002 Chinese J. Lasers 29 517 (in Chinese)[段海峰, 杨泽平, 王淑青, 张雨东 2002 中国激光 29 517]

    [21]

    Yao Q Q, Dong Y, Wang Q H, Jin G Y 2018 Appl. Opt. 57 2245

    [22]

    Feng X X, Zhang L Y, Ye N, Yang B W 2012 Acta Optica Sin. 32 0512002 (in Chinese)[冯新星, 张丽艳, 叶南, 杨博文 2012 光学学报 32 0512002]

  • [1] Yong Kang-Le, Yan Jia-Wei, Tang Shan-Fa, Zhang Rong-Zhu. Influence of coma and spherical aberration on transmission characteristics of vortex beams in slant atmospheric turbulence. Acta Physica Sinica, 2020, 69(1): 014201. doi: 10.7498/aps.69.20191254
    [2] Lü Bai-Da, Tao Xiang-Yang, Ji Xiao-Ling. The influence of thermal effects in a beam control system and spherical aberration on the laser beam quality. Acta Physica Sinica, 2004, 53(3): 952-960. doi: 10.7498/aps.53.952
    [3] Lü Bai-Da, Zhao Guang-Pu. Diffraction-induced spectral switches of spherically aberrated polychromatic Gaussian beams. Acta Physica Sinica, 2004, 53(9): 2974-2979. doi: 10.7498/aps.53.2974
    [4] Lu Zhen-Wu, Sun Qiang, Liu Hua, Li Dong-Xi, Zhang Yun-Cui. A research of conformal optical system based on Wassermann-Wolf equations. Acta Physica Sinica, 2007, 56(10): 5766-5771. doi: 10.7498/aps.56.5766
    [5] Xu Xiu-Wei, Ren Ting-Qi, Chi Yong-Jiang, Zhu You-Liang, Liu Shu-Yan. Characteristic functions and quasi-probability distribution functions of multi-mode Bose quadratic polynomial system. Acta Physica Sinica, 2006, 55(8): 3892-3897. doi: 10.7498/aps.55.3892
    [6] Fan Hong-Yi, Lou Sen-Yue, Pan Xiao-Yin, Da Cheng. Binomial theorem involving Hermite polynomials and negative-binomial theorem involving Laguerre polynomials. Acta Physica Sinica, 2013, 62(24): 240301. doi: 10.7498/aps.62.240301
    [7] Gu Yuan, Shi Rong-Ye, Wang Yan-Hui. study on sensitivity-related parameters of distributed feedback laser-pumped cesium atomic magnetometer. Acta Physica Sinica, 2014, 63(11): 110701. doi: 10.7498/aps.63.110701
    [8] Dong Fan-Long, Ge Ting-Wu, Zhang Xue-Xia, Tan Qi-Rui, Wang Zhi-Yong. 300 W all-fiber amplifier with distributed side-coupled pump configuration. Acta Physica Sinica, 2015, 64(8): 084205. doi: 10.7498/aps.64.084205
    [9] Xu Wei, Li Wei, Jin Yan-Fei, Ma Shao-Juan. Period-doubling bifurcation analysis of stochastic van der Pol system via Chebyshev polynomial approximation. Acta Physica Sinica, 2005, 54(8): 3508-3515. doi: 10.7498/aps.54.3508
    [10] Wu Chu. Algebraic representations of polynomial angular momentum algebra and Its realizations. Acta Physica Sinica, 2006, 55(6): 2676-2681. doi: 10.7498/aps.55.2676
  • Citation:
Metrics
  • Abstract views:  136
  • PDF Downloads:  36
  • Cited By: 0
Publishing process
  • Received Date:  16 January 2018
  • Accepted Date:  02 June 2018
  • Published Online:  05 September 2018

Numerical simulation of effect of pump distribution on spherical aberration of end-pumped laser

    Corresponding author: Dong Yuan, laser_dongyuan@163.com
  • 1. School of Science, Changchun University of Science and Technology, Changchun 130022, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 61505012).

Abstract: In order to study the spherical aberration of thermal lens when the laser crystal is pumped with the pump light distributed differently and the pump light under the end-pumping condition, in this paper we establish a single-ended pump and constant temperature thermal model to analyze the working characteristics of the Nd:YVO4 crystal. The steady state heat conduction equation and Zernike polynomials are solved, and the relationship between thermal spherical aberration and distribution of pump laser is established. The model is used in simulation, and the simulation results are further analyzed theoretically, showing that under the same pump power, the spherical aberration is greatest when the pump beam is of 2-order super-Gaussian distribution. The spherical aberration decreases with the increase of pump distribution coefficient k (except the Gaussian distribution). With the increase of pump power, the influence of pump distribution coefficient k on spherical aberration is aggravated gradually, and the difference in spherical aberration caused by different values of distribution coefficient k increases gradually. The range of strongest laser power of the 2-order super-Gaussian distribution pump is analyzed and simulated. Under same pump power, the maximum range of the strongest laser power of 2-order super-Gaussian distribution pump is 0.3-0.63 times the Gauss radius. The research methods and conclusions obtained in this paper have universal applicability and can be used for quantitatively analyzing the temperature distributions, thermal deformations, optical path difference distributions, and spherical aberration distributions of other laser crystals. At the same time, this study also provides a theoretical reference for improving spherical aberration from the perspective of changing the distribution of pump light and the laser output characteristics.

Reference (22)

Catalog

    /

    返回文章
    返回