Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of cooling process on qualities of Gem-diamond single crystals

Xiao Hong-Yu Qin Yu-Kun Liu Li-Na Bao Zhi-Gang Tang Chun-Juan Sun Rui-Rui Zhang Yong-Sheng Li Shang-Sheng Jia Xiao-Peng

Effects of cooling process on qualities of Gem-diamond single crystals

Xiao Hong-Yu, Qin Yu-Kun, Liu Li-Na, Bao Zhi-Gang, Tang Chun-Juan, Sun Rui-Rui, Zhang Yong-Sheng, Li Shang-Sheng, Jia Xiao-Peng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In the paper, under 5.6 GPa and 1200-1400℃, the type Ib diamond single crystals on defect-free[111] -oriented seed crystals are synthesized in a cubic anvil under high pressure and high temperature when the crack problem of diamond single crystal appears frequently. Highpurity Fe-Ni-Co solvents are chosen as the catalysts. Highpurity graphite powder (99.99%, purity) is selected as a carbon source. The effects of cooling process on the qualities of Gem-diamond single crystals are studied carefully. First, in order to study the common crack defects of diamond single crystals, using scanning electron microscope (SEM), the surface morphologies of high quality diamond single crystals and crack crystals are obtained respectively. Our SEM test results show that the surfaces of the crack crystals and the high quality crystals are all very smooth. Therefore, the crack crystal problem is not directly caused by the unordered accumulation of carbon. Second, the concentrations of nitrogen in the high quality diamonds and crack crystals are measured by Fourier transform infrared. In our studies, the nitrogen content of the diamond single crystal with crack is similar to the nitrogen content of high quality single crystal, so the appearance of crystal crack is not caused by high impurity content. According to the test results and the regularity of the occurrence of crack crystals, the reasons for the occurrence of crack crystals are analyzed seriously. When the weather conditions such as seasonal change, wind, rain or snowfall are not very stable, the probability of crack crystal problem to appear will increase greatly. In our opinion, the decrease of diamond crystal quality caused by the fluctuation of external growth conditions is the internal cause of crack crystal problem appearing. After growing diamond crystals, choosing the traditional power failure mode and slowing cooling process respectively, the effect of cooling process on the quality of diamond single crystal is investigated. In the season of the crack problem occurring frequently, choosing power failure cooling process, cracks appear in both diamond crystals with 1.3 mm or 6.0 mm in diameter. With the slow cooling process, the synthetic diamond crystals with 1.2 mm or 5.8 mm in diameter are all high-quality single crystals with no cracks inside. The research results show that the slow cooling process can effectively restrain the occurrence of crack crystal problems. In addition, the mechanism problems of crack crystals and the mechanisms of the effects of slow cooling process on diamond crystal qualities are discussed in detail. We believe that the slow cooling process is effective in solving the crack crystal problem, which is mainly attributed to the following two aspects:on the one hand, the slow cooling makes the internal stress of diamond single crystal growing effectively released, which improves the compressive strength of the crystal and the crystal quality as well; on the other hand, the slow cooling makes the solidification process of the catalyst melt slowly, which provides enough time for the crystal to balance the external stress of the catalyst and the equipment, so that the crystals, which are not affected by the unbalanced external stress, are not cracked.
      Corresponding author: Qin Yu-Kun, qinyukun2046@163.com
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61007023), the Key Science and Technology Program of Henan Province, China (Grant No. 162102210275), the Education Department of Henan Province, China (Grant Nos. 16A140044, 16A140012), the Young Core Instructor and Domestic Visitor Foundation from Henan Province Higher Education Institutions of China (Grant No. 2015GGJS-112), and the Natural Science Foundation of Henan Higher Education Institutions of China (Grant Nos. 17A430004, 18A430017).
    [1]

    Bundy F P, Hall H T, Strong H M, Wentorf Jr R H 1955 Nature 176 51

    [2]

    Bovenkerk H P, Bundy F P, Hall H T, Strong H M, Wentorf Jr R H 1959 Nature 184 1094

    [3]

    Strong H M 1963 J. Phys. Chem. 39 2057

    [4]

    Traore A, Muret P, Fiori A, Eon D, Gheeraert E, Pernot J 2014 Appl. Phys. Lett. 104 052105

    [5]

    Sumiya H, Toda N, Satoh S 2002 J. Cryst. Growth 237-239 1281

    [6]

    Kanda H 2001 Radiat. Eff. Defect. Solid 156 163

    [7]

    Li Y, Jia X P, Feng Y G, Fang C, Fan L J, Li Y D, Zeng X, Ma H A 2015 Chin. Phys. B 24 088104

    [8]

    Hu M H, Bi N, Li S S, Su T C, Zhou A G, Hu Q, Jia X P, Ma H A 2015 Chin. Phys. B 24 038101

    [9]

    Zhang Z F, Jia X P, Liu X B, Hu M H, Li Y, Yan B M, Ma H A 2012 Chin. Phys. B 21 038103

    [10]

    Xiao H Y, Qin Y K, Sui Y M, Liang Z Z, Liu L N, Zhang Y S 2016 Acta Phys. Sin. 65 070705 (in Chinese) [肖宏宇, 秦玉琨, 隋永明, 梁中翥, 刘利娜, 张永胜 2016 物理学报 65 070705]

    [11]

    Ren Z Y, Zhang J F, Zhang J C, Xu S R, Zhang C F, Quan R D, Hao Y 2017 Acta Phys. Sin. 66 208101 (in Chinese) [任泽阳, 张金风, 张进成, 许晟瑞, 张春福, 全汝岱, 郝跃 2017 物理学报 66 208101]

    [12]

    Liu Y J, He D W, Wang P, Tang M J, Xu C, Wang W D, Liu J, Liu G D, Kou Z L 2017 Acta Phys. Sin. 66 038103 (in Chinese) [刘银娟, 贺端威, 王培, 唐明君, 许超, 王文丹, 刘进, 刘国端, 寇自立 2017 物理学报 66 038103]

    [13]

    Schein J, Campbell K M, Prasad R R, Prasad R R, Binder R, Krishnan M 2002 Rev. Sci. Instrum. 73 18

    [14]

    Sumiya H, Toda N, Satoh S 1997 Diam. Relat. Mater. 6 1841

    [15]

    Palyanov Y N, Borzdov Y M, Kupriyanov I N, Bataleva Y V, Khohkhryakov A F 2015 Diam. Relat. Mater. 58 40

    [16]

    Bormashov V S, Tarelkin S A, Buga S G, Kuznetsov M S, Terentiev S A, Semenov A N, Blank V D 2013 Diam. Relat. Mater. 35 19

    [17]

    Zhang H, Li S S, Su T C, Hu M H, Li G H, Man H A, Jia X P 2016 Chin. Phys. B 25 118104

    [18]

    Sun S S, Liu M N, Cui W, Jia X P, Ma H A, Yang L Y 2016 Int. J. Refract. Met. Hard Mater. 61 79

    [19]

    Yan B M, Jia X P, Fang C, Chen N, Li Y D, Sun S S, Ma H A 2015 Int. J. Refract. Met. Hard Mater. 54 309

    [20]

    Palyanov Y N, Kupriyanov I N, Borzdova Y M, Bataleva Y V 2015 Cryst. Eng. Comm. 17 7323

    [21]

    Sumiya H, Harano K, Tamasaku K 2015 Diam. Relat. Mater. 58 221

    [22]

    Xiao H Y, Su J F, Zhang Y S, Bao Z G 2012 Acta Phys. Sin. 61 248101 (in Chinese) [肖宏宇, 苏剑峰, 张永胜, 鲍志刚 2012 物理学报 61 248101]

  • [1]

    Bundy F P, Hall H T, Strong H M, Wentorf Jr R H 1955 Nature 176 51

    [2]

    Bovenkerk H P, Bundy F P, Hall H T, Strong H M, Wentorf Jr R H 1959 Nature 184 1094

    [3]

    Strong H M 1963 J. Phys. Chem. 39 2057

    [4]

    Traore A, Muret P, Fiori A, Eon D, Gheeraert E, Pernot J 2014 Appl. Phys. Lett. 104 052105

    [5]

    Sumiya H, Toda N, Satoh S 2002 J. Cryst. Growth 237-239 1281

    [6]

    Kanda H 2001 Radiat. Eff. Defect. Solid 156 163

    [7]

    Li Y, Jia X P, Feng Y G, Fang C, Fan L J, Li Y D, Zeng X, Ma H A 2015 Chin. Phys. B 24 088104

    [8]

    Hu M H, Bi N, Li S S, Su T C, Zhou A G, Hu Q, Jia X P, Ma H A 2015 Chin. Phys. B 24 038101

    [9]

    Zhang Z F, Jia X P, Liu X B, Hu M H, Li Y, Yan B M, Ma H A 2012 Chin. Phys. B 21 038103

    [10]

    Xiao H Y, Qin Y K, Sui Y M, Liang Z Z, Liu L N, Zhang Y S 2016 Acta Phys. Sin. 65 070705 (in Chinese) [肖宏宇, 秦玉琨, 隋永明, 梁中翥, 刘利娜, 张永胜 2016 物理学报 65 070705]

    [11]

    Ren Z Y, Zhang J F, Zhang J C, Xu S R, Zhang C F, Quan R D, Hao Y 2017 Acta Phys. Sin. 66 208101 (in Chinese) [任泽阳, 张金风, 张进成, 许晟瑞, 张春福, 全汝岱, 郝跃 2017 物理学报 66 208101]

    [12]

    Liu Y J, He D W, Wang P, Tang M J, Xu C, Wang W D, Liu J, Liu G D, Kou Z L 2017 Acta Phys. Sin. 66 038103 (in Chinese) [刘银娟, 贺端威, 王培, 唐明君, 许超, 王文丹, 刘进, 刘国端, 寇自立 2017 物理学报 66 038103]

    [13]

    Schein J, Campbell K M, Prasad R R, Prasad R R, Binder R, Krishnan M 2002 Rev. Sci. Instrum. 73 18

    [14]

    Sumiya H, Toda N, Satoh S 1997 Diam. Relat. Mater. 6 1841

    [15]

    Palyanov Y N, Borzdov Y M, Kupriyanov I N, Bataleva Y V, Khohkhryakov A F 2015 Diam. Relat. Mater. 58 40

    [16]

    Bormashov V S, Tarelkin S A, Buga S G, Kuznetsov M S, Terentiev S A, Semenov A N, Blank V D 2013 Diam. Relat. Mater. 35 19

    [17]

    Zhang H, Li S S, Su T C, Hu M H, Li G H, Man H A, Jia X P 2016 Chin. Phys. B 25 118104

    [18]

    Sun S S, Liu M N, Cui W, Jia X P, Ma H A, Yang L Y 2016 Int. J. Refract. Met. Hard Mater. 61 79

    [19]

    Yan B M, Jia X P, Fang C, Chen N, Li Y D, Sun S S, Ma H A 2015 Int. J. Refract. Met. Hard Mater. 54 309

    [20]

    Palyanov Y N, Kupriyanov I N, Borzdova Y M, Bataleva Y V 2015 Cryst. Eng. Comm. 17 7323

    [21]

    Sumiya H, Harano K, Tamasaku K 2015 Diam. Relat. Mater. 58 221

    [22]

    Xiao H Y, Su J F, Zhang Y S, Bao Z G 2012 Acta Phys. Sin. 61 248101 (in Chinese) [肖宏宇, 苏剑峰, 张永胜, 鲍志刚 2012 物理学报 61 248101]

  • [1] Xiao Hong-Yu, Qin Yu-Kun, Sui Yong-Ming, Liang Zhong-Zhu, Liu Li-Na, Zhang Yong-Sheng. Effects of cavity size on the growth of hexahedral type-Ib gem-diamond single crystals. Acta Physica Sinica, 2016, 65(7): 070705. doi: 10.7498/aps.65.070705
    [2] Qin Yu-Kun, Xiao Hong-Yu, Liu Li-Na, Sun Rui-Rui, Hu Qiu-Bo, Bao Zhi-Gang, Zhang Yong-Sheng, Li Shang-Sheng, Jia Xiao-Peng. Effects of seed crystal size on growth of gem-diamond single crystal. Acta Physica Sinica, 2019, 68(2): 020701. doi: 10.7498/aps.68.20181855
    [3] Li Yong, Li Zong-Bao, Song Mou-Sheng, Wang Ying, Jia Xiao-Peng, Ma Hong-An. Synthesis and electrical properties study of Ib type diamond single crystal co-doped with boron and hydrogen under HPHT conditions. Acta Physica Sinica, 2016, 65(11): 118103. doi: 10.7498/aps.65.118103
    [4] Xiao Hong-Yu, Li Shang-Sheng, Qin Yu-Kun, Liang Zhong-Zhu, Zhang Yong-Sheng, Zhang Dong-Mei, Zhang Yi-Shun. Studies on synthesis of boron-doped Gem-diamond single crystals under high temperature and high presure. Acta Physica Sinica, 2014, 63(19): 198101. doi: 10.7498/aps.63.198101
    [5] Fang Chao, Jia Xiao-Peng, Yan Bing-Min, Chen Ning, Li Ya-Dong, Chen Liang-Chao, Guo Long-Suo, Ma Hong-An. Effects of nitrogen and hydrogen co-doped on {100}-oriented single diamond under high temperature and high pressure. Acta Physica Sinica, 2015, 64(22): 228101. doi: 10.7498/aps.64.228101
    [6] Research progress of large diamond single crystals under high pressure and high temperature. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20200692
    [7] Jiang Ming-Quan, Li Xin, Fang Lei-Ming, Xie Lei, Chen Xi-Ping, Hu Qi-Wei, Li Qiang, Li Qing-Ze, Chen Bo, He Duan-Wei. Optimal design and experimental verification of high-temperature and high-pressure assembly of neutron diffraction based on PE-type press. Acta Physica Sinica, 2020, 69(22): 226101. doi: 10.7498/aps.69.20200832
    [8] Li Yong, Wang Ying, Li Shang-Sheng, Li Zong-Bao, Luo Kai-Wu, Ran Mao-Wu, Song Mou-Sheng. Synthesis of diamond co-doped with B and S under high pressure and high temperature and electrical properties of the synthesized diamond. Acta Physica Sinica, 2019, 68(9): 098101. doi: 10.7498/aps.68.20190133
    [9] Wang Jun-Zhuo, Li Shang-Sheng, Su Tai-Chao, Hu Mei-Hua, Hu Qiang, Wu Yu-Min, Wang Jian-Kang, Han Fei, Yu Kun-Peng, Gao Guang-Jin, Guo Ming-Ming, Jia Xiao-Peng, Ma Hong-An, Xiao Hong-Yu. Shape controlled growth for type Ib large diamond crystals. Acta Physica Sinica, 2018, 67(16): 168101. doi: 10.7498/aps.67.20180356
    [10] Qin Jie-Ming, Ying Zhang, Cao Jian-Ming, Tian Li-Fei. Synthesis and characterization of the grinding compoundlevel diamond by pure Fe catalyst. Acta Physica Sinica, 2011, 60(5): 058102. doi: 10.7498/aps.60.058102
    [11] Xiao Hong-Yu, Liu Li-Na, Qin Yu-Kun, Zhang Dong-Mei, Zhang Yong-Sheng, Sui Yong-Ming, Liang Zhong-Zhu. Syntheses of B2O3-doped gem-diamond single crystals. Acta Physica Sinica, 2016, 65(5): 050701. doi: 10.7498/aps.65.050701
    [12] Fang Chao, Jia Xiao-Peng, Chen Ning, Zhou Zhen-Xiang, Li Ya-Dong, Li Yong, Ma Hong-An. Crystal growth and characterization of hydrogen-doped single diamond with Fe(C5H5)2 additive. Acta Physica Sinica, 2015, 64(12): 128101. doi: 10.7498/aps.64.128101
    [13] Qin Jie-Ming, Wang Hao, Zeng Fan-Ming, Li Jian-Li, Wan Yu-Chun, Liu Jing-He. Synthesis of MgxZn1-xO under high pressure and high temperature. Acta Physica Sinica, 2010, 59(12): 8910-8914. doi: 10.7498/aps.59.8910
    [14] Xiang Jun, Li Li-Ping, Su Wen-Hui. Preparation and characterization of a new perovskite-type oxide ion conductor KN b1-xMgxO3-δ. Acta Physica Sinica, 2003, 52(6): 1474-1478. doi: 10.7498/aps.52.1474
    [15] Zhang Bu-Qiang, Xu Zhen-Yu, Liu Jian-Guo, Yao Lu, Ruan Jun, Hu Jia-Yi, Xia Hui-Hui, Nie Wei, Yuan Feng, Kan Rui-Feng. Temperature measurement method of high temperature and high pressure flow field based on wavelength modulation spectroscopy technology. Acta Physica Sinica, 2019, 68(23): 233301. doi: 10.7498/aps.68.20190515
    [16] Sun Xiao-Wei, Chu Yan-Dong, Liu Zi-Jiang, Liu Yu-Xiao, Wang Cheng-Wei, Liu Wei-Min. Molecular dynamics study on the structural and thermodynamic properties of the zinc-blende phase of GaN at high pressures and high temperatures. Acta Physica Sinica, 2005, 54(12): 5830-5836. doi: 10.7498/aps.54.5830
    [17] Zhang Song-Bo, Wang Fang-Biao, Li Fa-Ming, Wen Ge-Hui. HPHT synthesis and magnetic property of -Fe2O3@C core-shell nanorods. Acta Physica Sinica, 2014, 63(10): 108101. doi: 10.7498/aps.63.108101
    [18] Jiang Jian-Jun, Li He-Ping, Dai Li-Dong, Hu Hai-Ying, Zhao Chao-Shuai. Raman spectra based pressure calibration of the non-gauge sapphire anvil cell at high temperature and high pressure. Acta Physica Sinica, 2015, 64(14): 149101. doi: 10.7498/aps.64.149101
    [19] Li Jun-Jun, Zhao Xue-Ping, Tao Qiang, Huang Xiao-Qing, Zhu Pin-Wen, Cui Tian, Wang Xin. Characterization of TiB2 synthesized at high pressure and high temperature. Acta Physica Sinica, 2013, 62(2): 026202. doi: 10.7498/aps.62.026202
    [20] Lu Zhi-Wen, Zhong Zhi-Guo, Liu Ke-Tao, Song Hai-Zhen, Li Gen-Quan. First-principles calculations of microstructure and thermodynamic properties of the intermetallic compound in Ag-Mg-Zn alloy under high pressure and high temperature. Acta Physica Sinica, 2013, 62(1): 016106. doi: 10.7498/aps.62.016106
  • Citation:
Metrics
  • Abstract views:  852
  • PDF Downloads:  92
  • Cited By: 0
Publishing process
  • Received Date:  28 January 2018
  • Accepted Date:  18 April 2018
  • Published Online:  20 July 2019

Effects of cooling process on qualities of Gem-diamond single crystals

    Corresponding author: Qin Yu-Kun, qinyukun2046@163.com
  • 1. Department of Mathematics and Physics, Luoyang Institute of Science and Technology, Luoyang 471023, China;
  • 2. School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China;
  • 3. State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
Fund Project:  Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61007023), the Key Science and Technology Program of Henan Province, China (Grant No. 162102210275), the Education Department of Henan Province, China (Grant Nos. 16A140044, 16A140012), the Young Core Instructor and Domestic Visitor Foundation from Henan Province Higher Education Institutions of China (Grant No. 2015GGJS-112), and the Natural Science Foundation of Henan Higher Education Institutions of China (Grant Nos. 17A430004, 18A430017).

Abstract: In the paper, under 5.6 GPa and 1200-1400℃, the type Ib diamond single crystals on defect-free[111] -oriented seed crystals are synthesized in a cubic anvil under high pressure and high temperature when the crack problem of diamond single crystal appears frequently. Highpurity Fe-Ni-Co solvents are chosen as the catalysts. Highpurity graphite powder (99.99%, purity) is selected as a carbon source. The effects of cooling process on the qualities of Gem-diamond single crystals are studied carefully. First, in order to study the common crack defects of diamond single crystals, using scanning electron microscope (SEM), the surface morphologies of high quality diamond single crystals and crack crystals are obtained respectively. Our SEM test results show that the surfaces of the crack crystals and the high quality crystals are all very smooth. Therefore, the crack crystal problem is not directly caused by the unordered accumulation of carbon. Second, the concentrations of nitrogen in the high quality diamonds and crack crystals are measured by Fourier transform infrared. In our studies, the nitrogen content of the diamond single crystal with crack is similar to the nitrogen content of high quality single crystal, so the appearance of crystal crack is not caused by high impurity content. According to the test results and the regularity of the occurrence of crack crystals, the reasons for the occurrence of crack crystals are analyzed seriously. When the weather conditions such as seasonal change, wind, rain or snowfall are not very stable, the probability of crack crystal problem to appear will increase greatly. In our opinion, the decrease of diamond crystal quality caused by the fluctuation of external growth conditions is the internal cause of crack crystal problem appearing. After growing diamond crystals, choosing the traditional power failure mode and slowing cooling process respectively, the effect of cooling process on the quality of diamond single crystal is investigated. In the season of the crack problem occurring frequently, choosing power failure cooling process, cracks appear in both diamond crystals with 1.3 mm or 6.0 mm in diameter. With the slow cooling process, the synthetic diamond crystals with 1.2 mm or 5.8 mm in diameter are all high-quality single crystals with no cracks inside. The research results show that the slow cooling process can effectively restrain the occurrence of crack crystal problems. In addition, the mechanism problems of crack crystals and the mechanisms of the effects of slow cooling process on diamond crystal qualities are discussed in detail. We believe that the slow cooling process is effective in solving the crack crystal problem, which is mainly attributed to the following two aspects:on the one hand, the slow cooling makes the internal stress of diamond single crystal growing effectively released, which improves the compressive strength of the crystal and the crystal quality as well; on the other hand, the slow cooling makes the solidification process of the catalyst melt slowly, which provides enough time for the crystal to balance the external stress of the catalyst and the equipment, so that the crystals, which are not affected by the unbalanced external stress, are not cracked.

Reference (22)

Catalog

    /

    返回文章
    返回