Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Analysis of urban human mobility behavior based on random matrix theory

Xu Zan-Xin Wang Yue Si Hong-Bo Feng Zhen-Ming

Analysis of urban human mobility behavior based on random matrix theory

Xu Zan-Xin, Wang Yue, Si Hong-Bo, Feng Zhen-Ming
PDF
Get Citation
  • Mobile communication applications provide a unique data source for the research of human mobility pattern. Based on the distribution data of urban mobile phone users, in this paper is explored the macroscopic dynamical behavior of urban mobility human by using the method of random matrix theory. The largest eigenvalue and the corresponding eigenvector of mobile phone user data deviate far from the distribution of random matrix. The deviations from random matrix vary with time. We find that the largest eigenvalue corresponds to a whole behavior common to all urban human mobility. The results indicate the temporal trends of the mean of correlation coefficient and the largest eigenvalue. We also find that the spatio temporal evolution of the weight of eigenvector components for the eigenvector corresponding to the largest eigenvalue is very consistent with the fluctuation pattern of the macroscopic behavior of urban human mobility.
    • Funds:
    [1]

    Bohannon J 2006 Science 314 914

    [2]

    Onnela J O, Saramaki J, Hyvonen J, Szabo G, Lazer D, Kaski K, Kertesz J, Barabasi A L 2007 PNAS 104 18

    [3]

    Marta C G, Cesar A H, Barabasi A L 2008 Nature 453 7196

    [4]

    Hong W, Han X P, Zhou T, Wang B H 2009 Chinese Phys. Lett. 26 2

    [5]

    Ratti C, Williams S, Frenchman D, Pulselli R M 2006 EPB 33 5

    [6]

    Reades J, Calabrese F, Sevtsuk A, Ratti C 2007 IEEE Pervas Comput 6 3

    [7]

    Barabasi A L 2005 Nature 435 7039

    [8]

    Vazquez A, Oliveira J, Dezso Z 2006 Phys. Rev. E 73 3

    [9]

    Watts D, Strogatz S 1998 Nature 393 6684

    [10]

    Musolesi M, Mascolo C 2007 Mobile Computing and Communications Review 11 3

    [11]

    O’Neill E, Kostakos V, Kindberg T 2006 Ubiquitous Computing 4206 1

    [12]

    Wigner E P 1967 SIAM Review 9 1

    [13]

    Chen Z Q, Zheng R R, Chen H, Yao C Q 2000 Acta Phys. Sin. 49 5 (in Chinese) [陈志谦、 郑仁蓉、 陈 洪、 姚纯青 2000 物理学报 49 5]

    [14]

    Chen Z Q, Zheng R R 2001 Chin. Phys. 10 12

    [15]

    Li R, Yan P L, Chen J, Li J, Li J, Zhang K W, Zhong J X 2009 Acta Phys. Sin. 58 10 (in Chinese) [李 蓉、 颜平兰、 陈 健、 李 俊、 李 金、 张凯旺、 钟健新 2009 物理学报 58 10]

    [16]

    Zhang F Z, Wang J, Gu Y 1999 Acta Phys. Sin. 48 12 (in Chinese) [张飞舟、 王 娇、 顾 雁 1999 物理学报 48 12]

    [17]

    Xing Y Z, Xu G O 1999 Acta Phys. Sin. 48 5 (in Chinese) [邢永忠、 徐躬耦 1999 物理学报 48 5]

    [18]

    Plerou V, Gopikrishnan P, Rosenow B, Amaral L A N, Guhr T 2002 Phys. Rev. E 65 6

    [19]

    Yuan J, Mills K 2005 IEEE T DEPEND SECURE 2 4

    [20]

    Sengupta A M, Mitra P P 1999 Phys. Rev. E 60 3

  • [1]

    Bohannon J 2006 Science 314 914

    [2]

    Onnela J O, Saramaki J, Hyvonen J, Szabo G, Lazer D, Kaski K, Kertesz J, Barabasi A L 2007 PNAS 104 18

    [3]

    Marta C G, Cesar A H, Barabasi A L 2008 Nature 453 7196

    [4]

    Hong W, Han X P, Zhou T, Wang B H 2009 Chinese Phys. Lett. 26 2

    [5]

    Ratti C, Williams S, Frenchman D, Pulselli R M 2006 EPB 33 5

    [6]

    Reades J, Calabrese F, Sevtsuk A, Ratti C 2007 IEEE Pervas Comput 6 3

    [7]

    Barabasi A L 2005 Nature 435 7039

    [8]

    Vazquez A, Oliveira J, Dezso Z 2006 Phys. Rev. E 73 3

    [9]

    Watts D, Strogatz S 1998 Nature 393 6684

    [10]

    Musolesi M, Mascolo C 2007 Mobile Computing and Communications Review 11 3

    [11]

    O’Neill E, Kostakos V, Kindberg T 2006 Ubiquitous Computing 4206 1

    [12]

    Wigner E P 1967 SIAM Review 9 1

    [13]

    Chen Z Q, Zheng R R, Chen H, Yao C Q 2000 Acta Phys. Sin. 49 5 (in Chinese) [陈志谦、 郑仁蓉、 陈 洪、 姚纯青 2000 物理学报 49 5]

    [14]

    Chen Z Q, Zheng R R 2001 Chin. Phys. 10 12

    [15]

    Li R, Yan P L, Chen J, Li J, Li J, Zhang K W, Zhong J X 2009 Acta Phys. Sin. 58 10 (in Chinese) [李 蓉、 颜平兰、 陈 健、 李 俊、 李 金、 张凯旺、 钟健新 2009 物理学报 58 10]

    [16]

    Zhang F Z, Wang J, Gu Y 1999 Acta Phys. Sin. 48 12 (in Chinese) [张飞舟、 王 娇、 顾 雁 1999 物理学报 48 12]

    [17]

    Xing Y Z, Xu G O 1999 Acta Phys. Sin. 48 5 (in Chinese) [邢永忠、 徐躬耦 1999 物理学报 48 5]

    [18]

    Plerou V, Gopikrishnan P, Rosenow B, Amaral L A N, Guhr T 2002 Phys. Rev. E 65 6

    [19]

    Yuan J, Mills K 2005 IEEE T DEPEND SECURE 2 4

    [20]

    Sengupta A M, Mitra P P 1999 Phys. Rev. E 60 3

  • [1] Liu Ying-Guang, Bian Yong-Qing, Han Zhong-He. Heat transport behavior of bicrystal ZnO containing tilt grain boundary. Acta Physica Sinica, 2020, 69(3): 033101. doi: 10.7498/aps.69.20190627
    [2] The spring oscillator model degenerated into the coupled-mode theory by using secular perturbation theory. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191505
    [3] Zhang Zhan-Gang, Lei Zhi-Feng, Tong Teng, Li Xiao-Hui, Wang Song-Lin, Liang Tian-Jiao, Xi Kai, Peng Chao, He Yu-Juan, Huang Yun, En Yun-Fei. Comparison of neutron induced single event upsets in 14 nm FinFET and 65 nm planar static random access memory devices. Acta Physica Sinica, 2020, 69(5): 056101. doi: 10.7498/aps.69.20191209
    [4] Huang Yong-Feng, Cao Huai-Xin, Wang Wen-Hua. Conjugate linear symmetry and its application to \begin{document}$ {\mathcal{P}}{\mathcal{T}} $\end{document}-symmetry quantum theory. Acta Physica Sinica, 2020, 69(3): 030301. doi: 10.7498/aps.69.20191173
  • Citation:
Metrics
  • Abstract views:  5178
  • PDF Downloads:  5119
  • Cited By: 0
Publishing process
  • Received Date:  20 May 2010
  • Accepted Date:  13 July 2010
  • Published Online:  15 April 2011

Analysis of urban human mobility behavior based on random matrix theory

  • 1. Department of Electronic Engineering, Tsinghua University, Beijing 100084, China

Abstract: Mobile communication applications provide a unique data source for the research of human mobility pattern. Based on the distribution data of urban mobile phone users, in this paper is explored the macroscopic dynamical behavior of urban mobility human by using the method of random matrix theory. The largest eigenvalue and the corresponding eigenvector of mobile phone user data deviate far from the distribution of random matrix. The deviations from random matrix vary with time. We find that the largest eigenvalue corresponds to a whole behavior common to all urban human mobility. The results indicate the temporal trends of the mean of correlation coefficient and the largest eigenvalue. We also find that the spatio temporal evolution of the weight of eigenvector components for the eigenvector corresponding to the largest eigenvalue is very consistent with the fluctuation pattern of the macroscopic behavior of urban human mobility.

Reference (20)

Catalog

    /

    返回文章
    返回