Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical study and numerical verification of terahertz radiation emitted by carbon nanotubes

Wu Yu-Ming Le Li-Wei Wang Yan Wang Dong-Xing Fu Jia-Hui Wang Yue Wu Qun

Theoretical study and numerical verification of terahertz radiation emitted by carbon nanotubes

Wu Yu-Ming, Le Li-Wei, Wang Yan, Wang Dong-Xing, Fu Jia-Hui, Wang Yue, Wu Qun
PDF
Get Citation
  • Based on the theory of simple tight-binding, the electronic energy structure of carbon nanotubes has been obtained under the quantitative periodic boundary condition of the carbon nanotubes. Terahertz radiation emitted by carbon nanotubes was demonstrated theoretically by adopting the reported experimental results of the interaction between electron and phonon. The numerical results verify that the carbon nanotubs can generate terahertz radiation and the reason of the terahertz oscillation was analyzed. All results provide a sound theoretical basis for using carbon nanotubes to generate terahertz wave in the experiments.
    • Funds:
    [1]

    Zhang R, Li H, Cao J C, Fen S L 2009 Acta Phys. Sin. 58 4618 (in Chinese)[张 戎、 黎 华、 曹俊诚、 封松林 2009物理学报58 4618]

    [2]

    Zhang Y P, Zhang H Y, Geng Y F, Tan X L, Yan J Q 2009 Acta Phys. Sin. 58 7073 (in Chinese)[张玉萍、 张会云、 耿优福、 谭晓玲、 姚建铨 2009 物理学报 58 7073]

    [3]

    Shi W, Hou L, Liu Z, Tongue T 2009 J. Opt. Soc. Am. B 26 A107

    [4]

    Shi W, Qu G H, Xu M, Xue H, Ji W L, Zhang L, Tian L Q 2009 Appl. Phys. Lett. 94 072110

    [5]

    Li H, Han Y J, Tan Z Y, Zhang R, Cao J C 2010 Acta Phys. Sin. 59 2169 (in Chinese)[黎 华、 韩英军、 谭智勇、 张 戎、 曹俊诚 2010物理学报 59 2169]

    [6]

    Hafez W, Feng M 2005 Appl. Phys. Lett. 86 152101

    [7]

    Pennington G, Wickenden A E 2009 J. Appl. Phys. 105 094316

    [8]

    Akturk A, Pennington G, Goldsman N, Wickenden A 2007 IEEE Trans. Nanotechnol. 6 469

    [9]

    Shuba M V, Maksimenko S A, Lakhtakia A 2009 Phys. Rev. B 79 155403

    [10]

    Wu Q, Wang Y, Wu Y M, Zhuang L L, Li L W, Gui T L 2010 Chia. Phys. B 19 067801

    [11]

    Wang C, Cao J C 2009 Chaos 19 033136

    [12]

    Huang Y, Yin W Y 2008 IEEE Trans. Nanotechnol. 7 331

    [13]

    Hu C Z, Hu Y, Liu H J, Miao L, Shi J, Zhou X 2010 Chin. Phys. B 19 016301

    [14]

    Loiseau A, Launois P, Petit P, Roche S, Salvetat J P 2006 Understanding Carbon Nanotubes (Berlin: Springer)

    [15]

    Odom T W, Huang J, Kim L P, Lieber C M 1998 Nature 391 62

    [16]

    Park J Y, Rosenblatt S, Yaish Y, Sazonova V, üstünel H, Braig S, Arias T A, Brouwer P W, McEuen P L 2004 Nano Lett. 4 517

  • [1]

    Zhang R, Li H, Cao J C, Fen S L 2009 Acta Phys. Sin. 58 4618 (in Chinese)[张 戎、 黎 华、 曹俊诚、 封松林 2009物理学报58 4618]

    [2]

    Zhang Y P, Zhang H Y, Geng Y F, Tan X L, Yan J Q 2009 Acta Phys. Sin. 58 7073 (in Chinese)[张玉萍、 张会云、 耿优福、 谭晓玲、 姚建铨 2009 物理学报 58 7073]

    [3]

    Shi W, Hou L, Liu Z, Tongue T 2009 J. Opt. Soc. Am. B 26 A107

    [4]

    Shi W, Qu G H, Xu M, Xue H, Ji W L, Zhang L, Tian L Q 2009 Appl. Phys. Lett. 94 072110

    [5]

    Li H, Han Y J, Tan Z Y, Zhang R, Cao J C 2010 Acta Phys. Sin. 59 2169 (in Chinese)[黎 华、 韩英军、 谭智勇、 张 戎、 曹俊诚 2010物理学报 59 2169]

    [6]

    Hafez W, Feng M 2005 Appl. Phys. Lett. 86 152101

    [7]

    Pennington G, Wickenden A E 2009 J. Appl. Phys. 105 094316

    [8]

    Akturk A, Pennington G, Goldsman N, Wickenden A 2007 IEEE Trans. Nanotechnol. 6 469

    [9]

    Shuba M V, Maksimenko S A, Lakhtakia A 2009 Phys. Rev. B 79 155403

    [10]

    Wu Q, Wang Y, Wu Y M, Zhuang L L, Li L W, Gui T L 2010 Chia. Phys. B 19 067801

    [11]

    Wang C, Cao J C 2009 Chaos 19 033136

    [12]

    Huang Y, Yin W Y 2008 IEEE Trans. Nanotechnol. 7 331

    [13]

    Hu C Z, Hu Y, Liu H J, Miao L, Shi J, Zhou X 2010 Chin. Phys. B 19 016301

    [14]

    Loiseau A, Launois P, Petit P, Roche S, Salvetat J P 2006 Understanding Carbon Nanotubes (Berlin: Springer)

    [15]

    Odom T W, Huang J, Kim L P, Lieber C M 1998 Nature 391 62

    [16]

    Park J Y, Rosenblatt S, Yaish Y, Sazonova V, üstünel H, Braig S, Arias T A, Brouwer P W, McEuen P L 2004 Nano Lett. 4 517

  • [1] Wang Xiao-Lei, Zhao Jie-Hui, Li Miao, Jiang Guang-Ke, Hu Xiao-Xue, Zhang Nan, Zhai Hong-Chen, Liu Wei-Wei. Tight focus and field enhancement of terahertz waves using a thickness-graded silver-plated strip probe based on spoof surface plasmons. Acta Physica Sinica, 2020, 69(5): 054201. doi: 10.7498/aps.69.20191531
    [2] Zhang Meng, Yao Ruo-He, Liu Yu-Rong. A channel thermal noise model of nanoscaled metal-oxide-semiconductor field-effect transistor. Acta Physica Sinica, 2020, 69(5): 057101. doi: 10.7498/aps.69.20191512
    [3] Zhang Ya-Nan, Zhan Nan, Deng Ling-Ling, Chen Shu-Fen. Efficiency improvement in solution-processed multilayered phosphorescent white organic light emitting diodes by silica coated silver nanocubes. Acta Physica Sinica, 2020, 69(4): 047801. doi: 10.7498/aps.69.20191526
    [4] Investigate the effect of source-drain conduction in single-event transient on nanoscale bulk fin field effect transistor. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191896
    [5] Control of spiral waves in excitable media under polarized electric fields. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191934
    [6] Wu Yu-Ming, Ding Xiao, Wang Ren, Wang Bing-Zhong. Theoretical analysis of wide-angle metamaterial absorbers based on equivalent medium theory. Acta Physica Sinica, 2020, 69(5): 054202. doi: 10.7498/aps.69.20191732
    [7] Dong Zheng-Qiong, Zhao Hang, Zhu Jin-Long, Shi Ya-Ting. Influence of incident illumination on optical scattering measurement of typical photoresist nanostructure. Acta Physica Sinica, 2020, 69(3): 030601. doi: 10.7498/aps.69.20191525
    [8] Xu Xian-Da, Zhao Lei, Sun Wei-Feng. First-principles on the energy band mechanism for modifying conduction property of graphene nanomeshes. Acta Physica Sinica, 2020, 69(4): 047101. doi: 10.7498/aps.69.20190657
    [9] Li Chuang, Li Wei-Wei, Cai Li, Xie Dan, Liu Bao-Jun, Xiang Lan, Yang Xiao-Kuo, Dong Dan-Na, Liu Jia-Hao, Chen Ya-Bo. Flexible nitrogen dioxide gas sensor based on reduced graphene oxide sensing material using silver nanowire electrode. Acta Physica Sinica, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191390
    [10] Preparing GaN nanowires on Al2O3 substrate without catalyst and its optical property research. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191923
  • Citation:
Metrics
  • Abstract views:  3712
  • PDF Downloads:  710
  • Cited By: 0
Publishing process
  • Received Date:  02 June 2010
  • Accepted Date:  10 September 2010
  • Published Online:  15 May 2011

Theoretical study and numerical verification of terahertz radiation emitted by carbon nanotubes

  • 1. (1)Department of Electrical and Computer Engineering, National University of Singapore 119260, Singapore; (2)Department of Electrical Science and Technology, Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China; (3)Department of Electrical Science and Technology, Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China; State Key Lahoratory of Millimeter Wave, Nanjing 2100; (4)School of Electronics and Information Technology, Harbin Institute of Technology, Harbin 150001, China; (5)School of Electronics and Information Technology, Harbin Institute of Technology, Harbin 150001, China; Department of Electrical Science and Technology, Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin Universit; (6)School of Electronics and Information Technology, Harbin Institute of Technology, Harbin 150001, China; State Key Lahoratory of Millimeter Wave, Nanjing 210096, China

Abstract: Based on the theory of simple tight-binding, the electronic energy structure of carbon nanotubes has been obtained under the quantitative periodic boundary condition of the carbon nanotubes. Terahertz radiation emitted by carbon nanotubes was demonstrated theoretically by adopting the reported experimental results of the interaction between electron and phonon. The numerical results verify that the carbon nanotubs can generate terahertz radiation and the reason of the terahertz oscillation was analyzed. All results provide a sound theoretical basis for using carbon nanotubes to generate terahertz wave in the experiments.

Reference (16)

Catalog

    /

    返回文章
    返回