x

## 留言板

New equivalence method of integrated three-phase AC-DC system based on differential homology and chaotic analysis

## New equivalence method of integrated three-phase AC-DC system based on differential homology and chaotic analysis

Zha Xiao-Ming, Zhang Yang, Sun Jian-Jun, Fan You-Ping
PDF

• #### Abstract

Integrated three-phase AC-DC system is widely used in modern society with series of base units. In this paper we deduce a general equation of the system in an affine coordination in order to use the differential geometry. Firstly, a new approximate equivalence method is presented by differential homology, including the judgment criterion and the main parameters of the equivalent model. Besides, the chaotic analysis relates different parameters to different situations which can accurately be simulated by PSCAD/EMTDC. And then calculation of eigenvalue indicates that the equivalence method is useful and simple. Finally, a simulation shows the accuracy and the applicability of the method.

#### Authors and contacts

• Funds: Project supported by the National Natural Science Foundation of China(Grant Nos. 61074101, 51177113).

#### References

 [1] Wang Y, Guan M, Zhang L 2010 Acta Phys. Sin. 59 867(in Chinese)[ [王永, 关淼, 张磊 2010 物理学报 55 867] [2] Yu M, Kang Y, Zhang Y, Shan H T, Duan S X 2010 Proceeding of CSEE 18 42 (in Chinese)[余蜜, 康勇, 张宇, 单鸿涛, 段善旭 2010 中国电机工程学报 18 42] [3] Kundur P, Parerba J, Ajjarapu V 2004 IEEE Trans on Power Systems. 19 3 [4] Xu J B, Xue Y S, Zhang Q P,Wang D X 2005 Automation of Electric Power Systems 29 14(in Chinese)[许剑冰, 薛禹胜, 张启平, 汪德星 2005 电力系统自动化 29 14] [5] Wang P, Hou B Y, Hou B Y 1986 Acta Phys. Sin. 35 4(in Chinese)[王佩, 侯伯元, 侯伯宇 1986 物理学报 35 4] [6] Shi D, Mao Z Z 2010 Control Theory and Applications 29 14 (in Chinese) [史冬琳, 毛志忠 2010 控制理论与应用 29 14 ] [7] Zhang Z F, Tang R Y, Zhu J G, Bai B D 2010 Electric Machines and Control. 14 12 (in Chinese)[张志峰, 唐任远, 朱建光, 白宝东 2010 电机与控制学报 14 12] [8] Lee B K, EhsamiM2001 IEEE trans on Industrial Electronics. 48 309 [9] Hou B Y, Hou B Y 2004 Differential Geometry for Physicists(2rd Press) [10] Hou B Y 1986 Acta Phys. Sin. 35 12(in Chinese)[侯伯宇 1986 物理学报 35 12] [11] Guo K Z 1991 Transaction of China Electrotechnical Society 18 1(in Chinese) [郭可忠 1991 电工技术学报 18 1]

#### Cited By

•  [1] Wang Y, Guan M, Zhang L 2010 Acta Phys. Sin. 59 867(in Chinese)[ [王永, 关淼, 张磊 2010 物理学报 55 867] [2] Yu M, Kang Y, Zhang Y, Shan H T, Duan S X 2010 Proceeding of CSEE 18 42 (in Chinese)[余蜜, 康勇, 张宇, 单鸿涛, 段善旭 2010 中国电机工程学报 18 42] [3] Kundur P, Parerba J, Ajjarapu V 2004 IEEE Trans on Power Systems. 19 3 [4] Xu J B, Xue Y S, Zhang Q P,Wang D X 2005 Automation of Electric Power Systems 29 14(in Chinese)[许剑冰, 薛禹胜, 张启平, 汪德星 2005 电力系统自动化 29 14] [5] Wang P, Hou B Y, Hou B Y 1986 Acta Phys. Sin. 35 4(in Chinese)[王佩, 侯伯元, 侯伯宇 1986 物理学报 35 4] [6] Shi D, Mao Z Z 2010 Control Theory and Applications 29 14 (in Chinese) [史冬琳, 毛志忠 2010 控制理论与应用 29 14 ] [7] Zhang Z F, Tang R Y, Zhu J G, Bai B D 2010 Electric Machines and Control. 14 12 (in Chinese)[张志峰, 唐任远, 朱建光, 白宝东 2010 电机与控制学报 14 12] [8] Lee B K, EhsamiM2001 IEEE trans on Industrial Electronics. 48 309 [9] Hou B Y, Hou B Y 2004 Differential Geometry for Physicists(2rd Press) [10] Hou B Y 1986 Acta Phys. Sin. 35 12(in Chinese)[侯伯宇 1986 物理学报 35 12] [11] Guo K Z 1991 Transaction of China Electrotechnical Society 18 1(in Chinese) [郭可忠 1991 电工技术学报 18 1]
•  [1] Zhang Yang, Zha Xiao-Ming, Liu Ya-Qi, Zhang Kun, Xiong Yi, Fan You-Ping. Perturbation solution of single-phase AC-DC converter based on nonlinear oscillation and chaotic analysis. Acta Physica Sinica, 2012, 61(21): 210508. doi: 10.7498/aps.61.210508 [2] Zhang Kun, Zhang Yang, Zha Xiao-Ming, Xiong Yi, Peng Guang-Qiang, Fan You-Ping. Chaos analysis of high-frequency harmonics of locomotive LCI. Acta Physica Sinica, 2012, 61(20): 200512. doi: 10.7498/aps.61.200512 [3] Hu Jin-Xiu, Gao Xiao-Wei. Reduced order model analysis method via proper orthogonal decomposition for variable coefficient of transient heat conduction based on boundary element method. Acta Physica Sinica, 2016, 65(1): 014701. doi: 10.7498/aps.65.014701 [4] Ge Wei-Kuan, Zhang Yi. Form invariance for a constrained system with second-order reducible differentia l constraints. Acta Physica Sinica, 2003, 52(9): 2105-2108. doi: 10.7498/aps.52.2105 [5] Lei Bo, Xiao Guo-Chun, Wu Xuan-L. Analysis of partial oscillation phenomenon in a digital-controlled three-phase inverter. Acta Physica Sinica, 2013, 62(4): 040502. doi: 10.7498/aps.62.040502 [6] Bao Bo-Cheng, Wang Chun-Li, Wu Hua-Gan, Qiao Xiao-Hua. Dimensionality reduction modeling and characteristic analysis of memristive circuit. Acta Physica Sinica, 2014, 63(2): 020504. doi: 10.7498/aps.63.020504 [7] Lan Dou-Dou, Guo Xiao-Min, Peng Chun-Sheng, Ji Yu-Lin, Liu Xiang-Lian, Li Pu, Guo Yan-Qiang. Photon number distribution and second-order degree of coherence of a chaotic laser: analysis and experimental investigation. Acta Physica Sinica, 2017, 66(12): 120502. doi: 10.7498/aps.66.120502 [8] Lu Yong-Kun. Robust fractional-order proportional-derivative control of unified chaotic systems with parametric uncertainties. Acta Physica Sinica, 2015, 64(5): 050503. doi: 10.7498/aps.64.050503 [9] Shen Yong-Jun, Yang Shao-Pu, Xing Hai-Jun. Dynamical analysis of linear single degree-of-freedom oscillator with fractional-order derivative. Acta Physica Sinica, 2012, 61(11): 110505. doi: 10.7498/aps.61.110505 [10] Shen Yong-Jun, Yang Shao-Pu, Xing Hai-Jun. Dynamical analysis of linear SDOF oscillator with fractional-order derivative (Ⅱ). Acta Physica Sinica, 2012, 61(15): 150503. doi: 10.7498/aps.61.150503 [11] Wei Biao-Lin, Luo Xiao-Shu, Guo Wei, Fu Jin-Jie, Wang Bing-Hong, Quan Hong-Jun. . Acta Physica Sinica, 2002, 51(10): 2205-2210. doi: 10.7498/aps.51.2205 [12] Wang Fa-Qiang, Liu Chong-Xin. Studies on Liu chaotic system and its experimental confirmation. Acta Physica Sinica, 2006, 55(10): 5061-5069. doi: 10.7498/aps.55.5061 [13] Bao Bo-Cheng, Hu Wen, Xu Jian-Ping, Liu Zhong, Zou Ling. Analysis and implementation of memristor chaotic circuit. Acta Physica Sinica, 2011, 60(12): 120502. doi: 10.7498/aps.60.120502 [14] Liu Cong-Xin. . Acta Physica Sinica, 2002, 51(6): 1198-1202. doi: 10.7498/aps.51.1198 [15] Wei Du-Qu, Luo Xiao-Shu, Wang Bing-Hong, Fang Jin-Qing. Controlling chaos in permanent magnet synchronous motor based on the differential geometry method. Acta Physica Sinica, 2006, 55(1): 54-59. doi: 10.7498/aps.55.54 [16] Zeng Zhi, Tao Ning, Feng Li-Chun, Zhang Cun-Lin. Logarithmic minus peak second derivative time based depth prediction. Acta Physica Sinica, 2013, 62(13): 138701. doi: 10.7498/aps.62.138701 [17] Wang Wei, Zeng Yi-Cheng, Sun Rui-Ting. Research on a six-order chaotic circuit with three memristors. Acta Physica Sinica, 2017, 66(4): 040502. doi: 10.7498/aps.66.040502 [18] Chen Zeng-Qiang, Xue Wei, Guo Yan-Ling. Analysis of chaos and circuit implementation of a permanent magnet synchronous motor. Acta Physica Sinica, 2009, 58(12): 8146-8151. doi: 10.7498/aps.58.8146 [19] Xu Zhe, Liu Chong-Xin, Yang Tao. Study on a new chaotic system with analysis and circuit experiment. Acta Physica Sinica, 2010, 59(1): 131-139. doi: 10.7498/aps.59.131 [20] Ji Ying, Bi Qin-Sheng. Non-smooth bifurcation analysis of a piecewise linear chaotic circuit. Acta Physica Sinica, 2010, 59(11): 7612-7617. doi: 10.7498/aps.59.7612
•  Citation:
##### Metrics
• Abstract views:  1859
• Cited By: 0
##### Publishing process
• Received Date:  27 April 2011
• Accepted Date:  16 May 2011
• Published Online:  05 January 2012

## New equivalence method of integrated three-phase AC-DC system based on differential homology and chaotic analysis

• 1. School of Electric Engineering, Wuhan University, Wuhan 430072, China
Fund Project:  Project supported by the National Natural Science Foundation of China(Grant Nos. 61074101, 51177113).

Abstract: Integrated three-phase AC-DC system is widely used in modern society with series of base units. In this paper we deduce a general equation of the system in an affine coordination in order to use the differential geometry. Firstly, a new approximate equivalence method is presented by differential homology, including the judgment criterion and the main parameters of the equivalent model. Besides, the chaotic analysis relates different parameters to different situations which can accurately be simulated by PSCAD/EMTDC. And then calculation of eigenvalue indicates that the equivalence method is useful and simple. Finally, a simulation shows the accuracy and the applicability of the method.

Reference (11)

/