Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Detection of brain auditory evoked magnetic field based on low-Tc superconducting quantum interface device

Zhang Shu-Lin Liu Yang-Bo Zeng Jia Wang Yong-Liang Kong Xiang-Yan Xie Xiao-Ming

Detection of brain auditory evoked magnetic field based on low-Tc superconducting quantum interface device

Zhang Shu-Lin, Liu Yang-Bo, Zeng Jia, Wang Yong-Liang, Kong Xiang-Yan, Xie Xiao-Ming
PDF
Get Citation
  • Superconducting quantum interface devices (SQUID) is widely used in human brain signal detection. As one of the applications of magnetoencephalography (MEG) system, the detection of the auditory evoked response is useful for the development of MEG system and the research into auditory mechanism of human brain. Generally, the auditory evoked response includes three peaks which are P50m, N100m and P200m. We develop a single-channel MEG system in a magnetically shielded room based on the superconducting quantum interface device (SQUID) and second-order axial gradiometer. The responses of the main peak N100m under different tone frequencies are preliminarily studied by using our system. The typical evoked response of N100m to 1 kHz pure tone and 100 ms duration is measured to be 0.4 pT. Under the tone stimulus at low frequency, the delay of the peak N100m to the tone onset is 125 ms at 100 Hz, which is longer than the typical value of 100 ms. In comparison with the response to 1 kHz pure tone stimulus, the amplitude of the evoked response in a random frequency range from 1 kHz to 4 kHz is stronger and the delay is several milliseconds. This work lays the foundation of the studies of the auditory mechanism and multichannel MEG system by using software gradiometers.
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2008AA02Z308) and the Science and Technology Commission of Shanghai Municipality (Grant No. 08JC1421800).
    [1]

    Pizzella V, Penna S D, Gratta C D, Romani G L 2001 Supercond. Sci. Technol. 14 R79

    [2]

    Sternickel K, Braginski A I 2006 Supercond. Sci. Technol. 19 S160

    [3]

    Rampp S, Stefan 2007 Expert Rev. Med. Devices 4 335

    [4]

    Knowlton R C 2003 Curr. Neurol. Neurosci. Rep. 3 341

    [5]

    Stufflebeam S M, Tanaka N, Ahlfors S P 2009 Hum. Brain Mapp. 30 1813

    [6]

    Hämäläinen M, Hari R, Ilmoniemi R J, Knuutila J, Lounasmaa O V 1999 Rev. Mod. Phys. 65 413

    [7]

    Finney E M, Clementz B A, Hickok G, Dobkins K R 2003 Neuroreport 14 1425

    [8]

    Richard E F, Roozbeh R, Andrew C P 2009 Phys. Life. Rev. 6 1

    [9]

    Rieger J W, Braun C, Bülthoff H H, Gegenfurtner K R 2005 J. Vision 5 275

    [10]

    Lounasmma O V, Seppä H 2004 J. Low Temp. Phys. 135 295

    [11]

    Brake H J M, Flokstra J, Jaszczuk W, Stammis R, Ancum G K, Martinez A, Rogalla H 1991 Clin. Phys. Physiol. Meas. 12 45

    [12]

    Lee Y H, Yu K K, Kwon H, Kim J M, Kim K, Park Y K, Yang H C, Chen K L, Yang S Y, Horng H E 2009 Supercond. Sci. Technol. 22 045023

    [13]

    Andrä W, Nowak H 2007 Magnetism in Medicine. 2nd ed. (Weinheim: Wiley-VCH) p117

    [14]

    Hamada T 2006 Biol. Cybem. 94 143

    [15]

    Gage N M, Siegel B, Callen M, Roberts T P L 2003 Neuroreport, 14 2047

    [16]

    Finney E M, Clementz B A, Hickok G, Dobkins K R 2003 Neuroreport, 14 1425

    [17]

    Blumenfeld L D, Clementz B A 2001 Clin. Neurophysiol. 112 1650

    [18]

    Hirano Y, Hirano S, Maekawa T, Obayashi C, Oribe N, Monji A, Kasai K, Kanba S, Onitsuka T 2010 Schizophr. Res. 117 61

    [19]

    Roberts T P L, Khan S Y, Rey M, Monroe J F, Cannon K, Blaskey L, Woldoff S, Qasmieh S, Gandal M, Schmidt G L, Zarnow D M, Levy S E, Edgar J C 2010 Autism Res. 3 8

    [20]

    Li Z, Liu D T, Tian Y, Chen G H, Zhang L H, Yang Q S, Feng J 2007 Chin. Phys. 16 2913

    [21]

    Wang Q, Ma P, Lu H, Tang X Z, Hua N, Tang F K 2009 Chin. Phys. B 18 5566

    [22]

    Zhang Y M, Zhang N, Han Z Z,Wang Y L,Wang C X, Chen H Y, Wang Y J, Zhang X H 2010 Neurol. Res. 32 625

    [23]

    Zhang Y T, Geng Z J, Zhang Q, Li W, Zhang J 2006 Chin. Med. J. 119 1548

    [24]

    Zhang Z Q, Zhang J, Zhao H Y, Zhang P, Lin T, Zeng Y J 2010 Neurosurg. Quart. 20 268

    [25]

    Zhang S L,Wang Y L,Wang HW, Jiang S Q, Xie XM2009 Phys. Med. Biol. 54 4793

  • [1]

    Pizzella V, Penna S D, Gratta C D, Romani G L 2001 Supercond. Sci. Technol. 14 R79

    [2]

    Sternickel K, Braginski A I 2006 Supercond. Sci. Technol. 19 S160

    [3]

    Rampp S, Stefan 2007 Expert Rev. Med. Devices 4 335

    [4]

    Knowlton R C 2003 Curr. Neurol. Neurosci. Rep. 3 341

    [5]

    Stufflebeam S M, Tanaka N, Ahlfors S P 2009 Hum. Brain Mapp. 30 1813

    [6]

    Hämäläinen M, Hari R, Ilmoniemi R J, Knuutila J, Lounasmaa O V 1999 Rev. Mod. Phys. 65 413

    [7]

    Finney E M, Clementz B A, Hickok G, Dobkins K R 2003 Neuroreport 14 1425

    [8]

    Richard E F, Roozbeh R, Andrew C P 2009 Phys. Life. Rev. 6 1

    [9]

    Rieger J W, Braun C, Bülthoff H H, Gegenfurtner K R 2005 J. Vision 5 275

    [10]

    Lounasmma O V, Seppä H 2004 J. Low Temp. Phys. 135 295

    [11]

    Brake H J M, Flokstra J, Jaszczuk W, Stammis R, Ancum G K, Martinez A, Rogalla H 1991 Clin. Phys. Physiol. Meas. 12 45

    [12]

    Lee Y H, Yu K K, Kwon H, Kim J M, Kim K, Park Y K, Yang H C, Chen K L, Yang S Y, Horng H E 2009 Supercond. Sci. Technol. 22 045023

    [13]

    Andrä W, Nowak H 2007 Magnetism in Medicine. 2nd ed. (Weinheim: Wiley-VCH) p117

    [14]

    Hamada T 2006 Biol. Cybem. 94 143

    [15]

    Gage N M, Siegel B, Callen M, Roberts T P L 2003 Neuroreport, 14 2047

    [16]

    Finney E M, Clementz B A, Hickok G, Dobkins K R 2003 Neuroreport, 14 1425

    [17]

    Blumenfeld L D, Clementz B A 2001 Clin. Neurophysiol. 112 1650

    [18]

    Hirano Y, Hirano S, Maekawa T, Obayashi C, Oribe N, Monji A, Kasai K, Kanba S, Onitsuka T 2010 Schizophr. Res. 117 61

    [19]

    Roberts T P L, Khan S Y, Rey M, Monroe J F, Cannon K, Blaskey L, Woldoff S, Qasmieh S, Gandal M, Schmidt G L, Zarnow D M, Levy S E, Edgar J C 2010 Autism Res. 3 8

    [20]

    Li Z, Liu D T, Tian Y, Chen G H, Zhang L H, Yang Q S, Feng J 2007 Chin. Phys. 16 2913

    [21]

    Wang Q, Ma P, Lu H, Tang X Z, Hua N, Tang F K 2009 Chin. Phys. B 18 5566

    [22]

    Zhang Y M, Zhang N, Han Z Z,Wang Y L,Wang C X, Chen H Y, Wang Y J, Zhang X H 2010 Neurol. Res. 32 625

    [23]

    Zhang Y T, Geng Z J, Zhang Q, Li W, Zhang J 2006 Chin. Med. J. 119 1548

    [24]

    Zhang Z Q, Zhang J, Zhao H Y, Zhang P, Lin T, Zeng Y J 2010 Neurosurg. Quart. 20 268

    [25]

    Zhang S L,Wang Y L,Wang HW, Jiang S Q, Xie XM2009 Phys. Med. Biol. 54 4793

  • [1] Zhang Yong-Sheng, Qiu Yang, Zhang Chao-Xiang, Li Hua, Zhang Shu-Lin, Wang Yong-Liang, Xu Xiao-Feng, Ding Hong-Sheng, Kong Xiang-Yan. Multi-channel magnetocardiogardiography system calibration. Acta Physica Sinica, 2014, 63(22): 228501. doi: 10.7498/aps.63.228501
    [2] Han Hao-Xuan, Zhang Guo-Feng, Zhang Xue, Liang Tian-Tian, Ying Li-Liang, Wang Yong-Liang, Peng Wei, Wang Zhen. Design and fabrication of low-noise superconducting quantum interference device magnetometer. Acta Physica Sinica, 2019, 68(13): 138501. doi: 10.7498/aps.68.20190483
    [3] Ding Hong-Sheng, Han Bin, Chen Geng-Hua, Zhang Li-Hua, Yang Qian-Sheng. . Acta Physica Sinica, 2002, 51(2): 220-223. doi: 10.7498/aps.51.220
    [4] Lang Pei-Lin, Chen Ke, Zheng Dong-Ning, Zhang Ming-Jian, Zhao Zhong-Xian, Qi Han-Hong. A method for designing high-order planar superconducting quantum interference device gradiometer. Acta Physica Sinica, 2004, 53(10): 3530-3534. doi: 10.7498/aps.53.3530
    [5] Ma Peng, Yao Kun, Xie Fei-Xiang, Zhang Sheng-Yuan, Deng Peng, He Dong-Feng, Zhang Fan, Liu Yu-Yuan, Nie Rui-Juan, Wang Fu-Ren, Wang Shou-Zheng, Dai Yuan-Dong. . Acta Physica Sinica, 2002, 51(2): 224-227. doi: 10.7498/aps.51.224
    [6] HAN BING, CHEN GENG-HUA, XU FENG-ZHI, ZHAO SHI-PING, YANG QIAN-SHENG. YBCO STEP-EDGE JUNCTION DC-SQUID PLANAR GRADIOMETER. Acta Physica Sinica, 2000, 49(10): 2051-2054. doi: 10.7498/aps.49.2051
    [7] Wang Yang-Jing, Xie Yong-Jun, Lei Zhen-Ya. Novel flux concentrator with a single CSRR surrounded by a resonator for radio frequency superconducting quantum interference device. Acta Physica Sinica, 2012, 61(9): 094210. doi: 10.7498/aps.61.094210
    [8] DU SHENG-WANG, DAI YUAN-DONG, WANG SHI-GUANG. TO PROBE THE PHASE OF THE ORDER PARAMETER IN HIGH-TEMPERATURE SUPERCONDUCTORS BY USING r.f. SQUID. Acta Physica Sinica, 1999, 48(12): 2364-2368. doi: 10.7498/aps.48.2364
    [9] Dong Zheng-Chao. . Acta Physica Sinica, 2002, 51(4): 894-897. doi: 10.7498/aps.51.894
    [10] Liu Ming, Xu Xiao-Feng, Wang Yong-Liang, Zeng Jia, Li Hua, Qiu Yang, Zhang Shu-Lin, Zhang Guo-Feng, Kong Xiang-Yan, Xie Xiao-Ming. Study on transmission characteristics of matching transformer in DC superconducting quantum interference device readout. Acta Physica Sinica, 2013, 62(18): 188501. doi: 10.7498/aps.62.188501
  • Citation:
Metrics
  • Abstract views:  1579
  • PDF Downloads:  450
  • Cited By: 0
Publishing process
  • Received Date:  22 December 2010
  • Accepted Date:  06 May 2011
  • Published Online:  20 January 2012

Detection of brain auditory evoked magnetic field based on low-Tc superconducting quantum interface device

  • 1. State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;
  • 2. Graduate University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
Fund Project:  Project supported by the National High Technology Research and Development Program of China (Grant No. 2008AA02Z308) and the Science and Technology Commission of Shanghai Municipality (Grant No. 08JC1421800).

Abstract: Superconducting quantum interface devices (SQUID) is widely used in human brain signal detection. As one of the applications of magnetoencephalography (MEG) system, the detection of the auditory evoked response is useful for the development of MEG system and the research into auditory mechanism of human brain. Generally, the auditory evoked response includes three peaks which are P50m, N100m and P200m. We develop a single-channel MEG system in a magnetically shielded room based on the superconducting quantum interface device (SQUID) and second-order axial gradiometer. The responses of the main peak N100m under different tone frequencies are preliminarily studied by using our system. The typical evoked response of N100m to 1 kHz pure tone and 100 ms duration is measured to be 0.4 pT. Under the tone stimulus at low frequency, the delay of the peak N100m to the tone onset is 125 ms at 100 Hz, which is longer than the typical value of 100 ms. In comparison with the response to 1 kHz pure tone stimulus, the amplitude of the evoked response in a random frequency range from 1 kHz to 4 kHz is stronger and the delay is several milliseconds. This work lays the foundation of the studies of the auditory mechanism and multichannel MEG system by using software gradiometers.

Reference (25)

Catalog

    /

    返回文章
    返回