Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Heterojunction structure forming in the polymer film doped with small-molecule organic semiconductors

Liu Ning Zhang Xin-Ping Dou Fei

Heterojunction structure forming in the polymer film doped with small-molecule organic semiconductors

Liu Ning, Zhang Xin-Ping, Dou Fei
PDF
Get Citation
  • Blends and doping of organic semiconductors are generally employed to improve effectively the charge transfer and dissociation performance. The absorption spectrum may be optimized making use of the different energy states of the components in the blends, which may favor the development of the photovoltaic or solar cell devices. Excellent type-II heterojunction structures can be produced by mixing the small-molecule perylene (EPPTC) and a copolymer of polyfluorene (F8BT). Actually, F8BT and EPPTC exhibit absorptions in the blue region and in the green region, respectively. Thus, the blend will have a much broadened absorption spectrum. In the experiment, the blend solution of these two materials in chloroform is spin-coated onto a piece of glass substrate, so that EPPTC is doped into the polymer of F8BT and the heterojunction structure forms in the final solid film. Then, steady-state absorption and fluorescence spectroscopy, as well as the transient photoluminesence spectroscopy (time-correlated single-photon counting), is used to investigate the formation and the photoluminescence properties of exciplex in the heterojunction film of F8BT doped with EPPTC. The photoluminscence (PL) spectrum and the life-time are measured to characterize the exciplex in the blend film, where the longer life-time of the red-shifted PL spectrum confirms the formation of the exciplex. This provides various experimental data for understanding the formation and the photophysical properties of the heterojunction structures in organic semiconductor blends. Futhermore, the absorption of the blend film covers a large range of the visible spectrum. Therefore, this kind of doping of organic semiconductor is important for the development of photovoltaic and solar cell devices.
    • Funds: Project supported by the Natural Natural Science Foundation of China (Grant No. 111074018), the Program for New Century Excellent Talents in University, the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20091103110012), and the Scientific Research Staring Foundation for the Returned Overseas Chinese Scholars, Ministry of Education of China.
    [1]

    Friend R H, Gymer R W, Holmes A B, Burroughes J H, Marks R N, Taliani C, Bradaley D D C, Dos Santos D A, Brédas J L, Lögdlund M, Salaneck W R 1999 Nature 397 121

    [2]

    Crone B K, Davids P S, Campbell I H, Smith D L 2000 J. Appl. Phys. 87 1974

    [3]

    Chappell J, Lidzey D G, Jukes P C, Higgins A M, Thompson R L, O0Connor S, Grizzi I, Fletcher R, O’Brien J, Geoghegan M, Jones R A L 2003 Nat. Mater. 2 616

    [4]

    Westenhoff S, Howard I A, Hodgkiss J M, Kirov K R, Bronstein H A, Williams C K, Greenham N C, Friend R H 2008 J. Am. Chem. Soc. 130 13653

    [5]

    Wilkinson F, Helman W P, Ross A B 1995 J. Phys. Chem. Refe. Data 24 663

    [6]

    Morteani A C, Sreearunothai P, Laura, Herz M, Friend R H, Silv C 2004 Phys. Rev. Lett. 92 247402.

    [7]

    Morteani A C, Friend R H, Silva C 2004 Chem. Phys. Lett. 391 81

    [8]

    Huang Y S, Westenhoff S, Avilov I, Sreearunothai P, Hodgkiss J M, Deleener C, Friend R H, Beljonne D D 2008 Nat. Mater. 7 483

    [9]

    Morteani A C, Dhoot A S, Kim J-S, Silva C, Greenham N C, Murphy C, Moons E, Cina S, Burroughes J H, Friend R H 2003 Adv. Mater. 15 1708

    [10]

    Peng C Z, Zhang X P, Liu H M, Feng S F 2010 Acta Phys. Sin. 59 5791 (in Chinese) [彭春增,张新平,刘红梅,冯胜飞 2010 物理学报 59 5791]

    [11]

    Shepherd W E B, Platt A F, Kendrich M J 2011 J. Phys. Chen. Lett. 2 362

    [12]

    Zhang W, Yu J S, Yuan K 2010 Proceedings of SPIE-The International Society for Optical Engineering 7658

    [13]

    Lai S L, ChanMY, Tong Q X 2010 J. Nonlinear Opt. Phys. Mater. 19 603

    [14]

    Park YW, Kim Y M, Choi J H 2011 J. Nanoscience Nanotechnology 11 1381

    [15]

    Zhang X P, Sun B Q 2007 J. Phys. Chem. B 111 10881

    [16]

    Kang J, Kaczmarek O, Liebscher J, Dähne1 L 2010 Int. J. Polym. Sci. 2010 264781

    [17]

    Chaudhuri D, Li D, Che Y, Shafran E, Gerton J M, Zang L, Lupton J M 2011 Nano Lett. 11 488

    [18]

    Provencher F, Laprade J F, C?oté M, Silva C 2009 Phys. Stat. Sol. (c) 6 93

  • [1]

    Friend R H, Gymer R W, Holmes A B, Burroughes J H, Marks R N, Taliani C, Bradaley D D C, Dos Santos D A, Brédas J L, Lögdlund M, Salaneck W R 1999 Nature 397 121

    [2]

    Crone B K, Davids P S, Campbell I H, Smith D L 2000 J. Appl. Phys. 87 1974

    [3]

    Chappell J, Lidzey D G, Jukes P C, Higgins A M, Thompson R L, O0Connor S, Grizzi I, Fletcher R, O’Brien J, Geoghegan M, Jones R A L 2003 Nat. Mater. 2 616

    [4]

    Westenhoff S, Howard I A, Hodgkiss J M, Kirov K R, Bronstein H A, Williams C K, Greenham N C, Friend R H 2008 J. Am. Chem. Soc. 130 13653

    [5]

    Wilkinson F, Helman W P, Ross A B 1995 J. Phys. Chem. Refe. Data 24 663

    [6]

    Morteani A C, Sreearunothai P, Laura, Herz M, Friend R H, Silv C 2004 Phys. Rev. Lett. 92 247402.

    [7]

    Morteani A C, Friend R H, Silva C 2004 Chem. Phys. Lett. 391 81

    [8]

    Huang Y S, Westenhoff S, Avilov I, Sreearunothai P, Hodgkiss J M, Deleener C, Friend R H, Beljonne D D 2008 Nat. Mater. 7 483

    [9]

    Morteani A C, Dhoot A S, Kim J-S, Silva C, Greenham N C, Murphy C, Moons E, Cina S, Burroughes J H, Friend R H 2003 Adv. Mater. 15 1708

    [10]

    Peng C Z, Zhang X P, Liu H M, Feng S F 2010 Acta Phys. Sin. 59 5791 (in Chinese) [彭春增,张新平,刘红梅,冯胜飞 2010 物理学报 59 5791]

    [11]

    Shepherd W E B, Platt A F, Kendrich M J 2011 J. Phys. Chen. Lett. 2 362

    [12]

    Zhang W, Yu J S, Yuan K 2010 Proceedings of SPIE-The International Society for Optical Engineering 7658

    [13]

    Lai S L, ChanMY, Tong Q X 2010 J. Nonlinear Opt. Phys. Mater. 19 603

    [14]

    Park YW, Kim Y M, Choi J H 2011 J. Nanoscience Nanotechnology 11 1381

    [15]

    Zhang X P, Sun B Q 2007 J. Phys. Chem. B 111 10881

    [16]

    Kang J, Kaczmarek O, Liebscher J, Dähne1 L 2010 Int. J. Polym. Sci. 2010 264781

    [17]

    Chaudhuri D, Li D, Che Y, Shafran E, Gerton J M, Zang L, Lupton J M 2011 Nano Lett. 11 488

    [18]

    Provencher F, Laprade J F, C?oté M, Silva C 2009 Phys. Stat. Sol. (c) 6 93

  • [1] Zhu Wen-Qing, Wu You-Zhi, Zheng Xin-You, Jiang Xue-Yin, Zhang Zhi-Lin, Sun Run-Guang, Xu Shao-Hong. Multicomponent excited-state emissions in a bilayer organic electroluminescent device. Acta Physica Sinica, 2004, 53(7): 2325-2329. doi: 10.7498/aps.53.2325
    [2] Peng Chun-Zeng, Zhang Xin-Ping, Liu Hong-Mei, Feng Sheng-Fei. Influence of particle plasmon resonance on the photoluminescence of exciplex in organic semiconductor blend film. Acta Physica Sinica, 2010, 59(8): 5791-5795. doi: 10.7498/aps.59.5791
    [3] Yuan Guo-Liang, Li Shuang, Ren Shen-Qiang, Liu Jun-Ming. Excited charge-transfer organics with multiferroicity. Acta Physica Sinica, 2018, 67(15): 157509. doi: 10.7498/aps.67.20180759
    [4] Li Xun-Shuan, Peng Ying-Quan, Yang Qing-Sen, Xing Hong-Wei, Lu Fei-Ping. Analytical model of charge transport at organic semiconductor interfaces. Acta Physica Sinica, 2007, 56(9): 5441-5445. doi: 10.7498/aps.56.5441
    [5] YANG DA-LIN, WAN MEI-XIANG, ZHANG JING-WEN, QIAN REN-YUAN. DRIFT MOBILITIES OF CARRIERS IN AMORPHOUS FILMS OF PVCz-TNF CHARGE-TRANSFER COMPLEXES. Acta Physica Sinica, 1982, 31(12): 104-109. doi: 10.7498/aps.31.104
    [6] Yu Huang-Zhong. Progress in the blend stacked structure of organic solar cells. Acta Physica Sinica, 2013, 62(2): 027201. doi: 10.7498/aps.62.027201
    [7] Chen Qiao, Mao Hong-Ying, Huang Han, Qian Hui-Qin, Zhang Jian-Hua, Li Hai-Yang, He Pi-Mo, Bao Shi-Ning, Yan Xin-Cheng. The structure and electronic state of the ordered thin film of perylene and tetracene on Ag(110) surface. Acta Physica Sinica, 2005, 54(1): 460-466. doi: 10.7498/aps.54.460
    [8] Zheng Jia-Jin, Lu Yun-Qing, Li Pei-Li. Optical nonlinearities of excited state intramolecular proton transfer molecule HBT. Acta Physica Sinica, 2010, 59(7): 4687-4693. doi: 10.7498/aps.59.4687
    [9] Wang Lu-Xia, Chang Kai-Nan. Study on electron transfer in a heterogeneous system using a density matrix theory approach. Acta Physica Sinica, 2014, 63(13): 137302. doi: 10.7498/aps.63.137302
    [10] XUE FANG-SHI. TRANSFERRED ELECTRON EFFECT BETWEEN DIFFERENT ENERGY VALLEYS IN SEMICONDUCTOR HETEROSTRUCTURE. Acta Physica Sinica, 1990, 39(6): 142-150. doi: 10.7498/aps.39.142
  • Citation:
Metrics
  • Abstract views:  1578
  • PDF Downloads:  580
  • Cited By: 0
Publishing process
  • Received Date:  08 February 2011
  • Accepted Date:  09 May 2011
  • Published Online:  20 January 2012

Heterojunction structure forming in the polymer film doped with small-molecule organic semiconductors

  • 1. Institute of Information Photonics Technology and College of Applied Sciences, Beijing University of Technology, Beijing 100124, China
Fund Project:  Project supported by the Natural Natural Science Foundation of China (Grant No. 111074018), the Program for New Century Excellent Talents in University, the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20091103110012), and the Scientific Research Staring Foundation for the Returned Overseas Chinese Scholars, Ministry of Education of China.

Abstract: Blends and doping of organic semiconductors are generally employed to improve effectively the charge transfer and dissociation performance. The absorption spectrum may be optimized making use of the different energy states of the components in the blends, which may favor the development of the photovoltaic or solar cell devices. Excellent type-II heterojunction structures can be produced by mixing the small-molecule perylene (EPPTC) and a copolymer of polyfluorene (F8BT). Actually, F8BT and EPPTC exhibit absorptions in the blue region and in the green region, respectively. Thus, the blend will have a much broadened absorption spectrum. In the experiment, the blend solution of these two materials in chloroform is spin-coated onto a piece of glass substrate, so that EPPTC is doped into the polymer of F8BT and the heterojunction structure forms in the final solid film. Then, steady-state absorption and fluorescence spectroscopy, as well as the transient photoluminesence spectroscopy (time-correlated single-photon counting), is used to investigate the formation and the photoluminescence properties of exciplex in the heterojunction film of F8BT doped with EPPTC. The photoluminscence (PL) spectrum and the life-time are measured to characterize the exciplex in the blend film, where the longer life-time of the red-shifted PL spectrum confirms the formation of the exciplex. This provides various experimental data for understanding the formation and the photophysical properties of the heterojunction structures in organic semiconductor blends. Futhermore, the absorption of the blend film covers a large range of the visible spectrum. Therefore, this kind of doping of organic semiconductor is important for the development of photovoltaic and solar cell devices.

Reference (18)

Catalog

    /

    返回文章
    返回