Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Photoelectricity performance research based on the sol-modified thin film electrode of dye-sensitized solar cells

Xu Wei-Wei Hu Lin-Hua Luo Xiang-Dong Liu Pei-Sheng Dai Song-Yuan

Photoelectricity performance research based on the sol-modified thin film electrode of dye-sensitized solar cells

Xu Wei-Wei, Hu Lin-Hua, Luo Xiang-Dong, Liu Pei-Sheng, Dai Song-Yuan
PDF
Get Citation
  • Nanoporous film electrode is a crucial composition of dye-sensitized solar cells, which influences the photoelectric conversion performance. To improve the property of the photoelectrode, different modification methods by using different concentrations of TiO2 sol are investigated. The crystallite size and phase of the nanoporous TiO2 particles and the TiO2 sol after sintering are studied with X-ray diffraction. The microstructure morphologies of the conductive glass and the films are determined by the high resolution transmission electron microscopy and the field emission scanning electron microscopy. The influences on electron lifetime n and the electron transit time d are analyzed by intensity-modulated photocurrent spectroscopy and photovoltage spectroscopy from the mechanisms of electron transport and back reaction kinetics. It is found that the back reactions are well suppressed under dark conditions after sol modifications. n is effectively extended and d is also shorten correspondingly by any kind of sol treatment. The short-current density and the photoelectric conversion efficiency are increased by 10.9% and 11.9% separately, when 0.10 molL-1 sol modification is applied both to the conductive glass and to the nanoporous TiO2 film at the same time.
      Corresponding author: , sydai@ipp.ac.cn
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant No. 2011CBA00700), the Major Program of Natural Science Basic Research of Institution of Higher Education of Jiangsu Province, China (Grant Nos. 08KJA510002, 10KJA140043), the Foundation of Key Laboratory of Novel Thin Film Solar Cells, Chinese Academy of Sciences (Grant No. KF201106), and the Scientific Research Foundation of Xinglin College, Nantong University, China (Grant No. 2010K122).
    [1]

    O'Regan B, Gräztel M 1991 Nature 353 737

    [2]

    Bach U, Lupo D, Comte P, Moser J E, Weissörtel F, Salbeck J, Spreitzer H, Grätzel M 1998 Nature 395 583

    [3]

    Grätzel M 2004 J. Photochem. Photobiol. A 164 3

    [4]

    Gao F F, Wang Y, Zhang J, Shi D, Wang M K, Humphry-Baker R, Wang P, Zakeeruddin S M, Gräztel M 2008 Chem. Commun. 23 2635

    [5]

    Huang Y, Dai S Y, Cheng S H, Hu L H, Kong F T, Kou D X, Jiang N Q 2010 Acta Phys. Sin. 59 643 (in Chinese) [黄阳, 戴松元, 陈双宏, 胡林华, 孔凡太, 寇东星, 姜年权 2010 物理学报 59 643]

    [6]

    Chen C Y, Wang M, Li J Y, Pootrakulchote N, Alibabaei L, Ngocle C H, Decoppet J D, Tsai J H, Grätzel C, Wu C G, Zakeeruddin S M, Gräztel M 2009 ACS Nano 3 3103

    [7]

    Dai S Y, Wang K J, Weng J, Sui Y F, Huang Y, Xiao S F, Chen S H, Hu L H, Kong F T, Pan X, Shi C W, Guo L 2005 Sol. Energy Mater. Sol. Cells 85 447

    [8]

    Frank A J, Kopidakis N, Van de Lagemaat J 2004 J. Coord. Chem. Rev. 248 1165

    [9]

    Ito S, Liska P, Comte P, Charvet R, Péchy P, Bach U, Schmidt-Mende L, Zakeeruddin S M, Kay A, Nazeeruddin M K, Grätzel M 2005 Chem. Commun. 14 4351

    [10]

    Van de Lagemaat J, Park N G, Frank A J 2000 J. Phys. Chem. B 104 2044

    [11]

    Pichot F, Ferrere S, Fields C L, Gregg B A 2001 J. Phys. Chem. B 105 1422

    [12]

    Kay A, Gräztel M 2002 Chem. Mater. 14 2930

    [13]

    Han L, Koide N, Chiba Y, Islam A, Mitate T 2006 C. R. Chimie 9 645

    [14]

    Chen D P, Zang X D, Wei C C, Liu C C, Zhao Y 2011 Acta Phys. Chim. Sin. 27 425 (in Chinese) [陈东坡, 张晓丹, 魏长春, 刘彩池, 赵颖 2011 物理化学学报 27 425]

    [15]

    Hao S C, Wu J H, Fan L Q, Huang Y F, Lin J M, Wei Y L 2004 Sol. Energy 76 745

    [16]

    Xu W W, Dai S Y, Fang X Q, Hu L H, Kong F T, Pan X, Wang K J 2005 Acta Phys. Sin. 54 5943 (in Chinese) [徐炜炜, 戴松元, 方霞琴, 胡林华, 孔凡太, 潘旭, 王孔嘉 2005 物理学报 54 5943]

    [17]

    Yang S M, Huang Y Y, Huang C H, Zhao X S 2002 Chem. Mater. 14 1500

    [18]

    Xu W W, Dai S Y, Hu L H, Liang L Y, Wang K J 2006 Chin. Phys. Lett. 23 2288

    [19]

    Hu L H, Dai S Y, Wang K J 2005 Acta Phys. Sin. 54 1914 (in Chinese) [胡林华, 戴松元, 王孔嘉 2005 物理学报 54 1914]

    [20]

    Dai S Y, Kong F T, Hu L H, Shi C W, Fang X Q, Pan X, Wang K J 2005 Acta Phys. Sin. 54 1919 (in Chinese) [戴松元, 孔凡太, 胡林华, 史成武, 方霞琴, 潘旭, 王孔嘉 2005 物理学报 54 1919]

    [21]

    Stathatos E, Lianos P, Zakeeruddin S M, Liska P, Gräztel M 2003 Chem. Mater. 15 1825

    [22]

    Peter L M, Wijayantha K G U 2000 Electrochim. Acta 45 4543

    [23]

    Kern R, Sastrawan R, Ferber J, Stangl R, Luther J 2002 Electrochim. Acta 47 4213

  • [1]

    O'Regan B, Gräztel M 1991 Nature 353 737

    [2]

    Bach U, Lupo D, Comte P, Moser J E, Weissörtel F, Salbeck J, Spreitzer H, Grätzel M 1998 Nature 395 583

    [3]

    Grätzel M 2004 J. Photochem. Photobiol. A 164 3

    [4]

    Gao F F, Wang Y, Zhang J, Shi D, Wang M K, Humphry-Baker R, Wang P, Zakeeruddin S M, Gräztel M 2008 Chem. Commun. 23 2635

    [5]

    Huang Y, Dai S Y, Cheng S H, Hu L H, Kong F T, Kou D X, Jiang N Q 2010 Acta Phys. Sin. 59 643 (in Chinese) [黄阳, 戴松元, 陈双宏, 胡林华, 孔凡太, 寇东星, 姜年权 2010 物理学报 59 643]

    [6]

    Chen C Y, Wang M, Li J Y, Pootrakulchote N, Alibabaei L, Ngocle C H, Decoppet J D, Tsai J H, Grätzel C, Wu C G, Zakeeruddin S M, Gräztel M 2009 ACS Nano 3 3103

    [7]

    Dai S Y, Wang K J, Weng J, Sui Y F, Huang Y, Xiao S F, Chen S H, Hu L H, Kong F T, Pan X, Shi C W, Guo L 2005 Sol. Energy Mater. Sol. Cells 85 447

    [8]

    Frank A J, Kopidakis N, Van de Lagemaat J 2004 J. Coord. Chem. Rev. 248 1165

    [9]

    Ito S, Liska P, Comte P, Charvet R, Péchy P, Bach U, Schmidt-Mende L, Zakeeruddin S M, Kay A, Nazeeruddin M K, Grätzel M 2005 Chem. Commun. 14 4351

    [10]

    Van de Lagemaat J, Park N G, Frank A J 2000 J. Phys. Chem. B 104 2044

    [11]

    Pichot F, Ferrere S, Fields C L, Gregg B A 2001 J. Phys. Chem. B 105 1422

    [12]

    Kay A, Gräztel M 2002 Chem. Mater. 14 2930

    [13]

    Han L, Koide N, Chiba Y, Islam A, Mitate T 2006 C. R. Chimie 9 645

    [14]

    Chen D P, Zang X D, Wei C C, Liu C C, Zhao Y 2011 Acta Phys. Chim. Sin. 27 425 (in Chinese) [陈东坡, 张晓丹, 魏长春, 刘彩池, 赵颖 2011 物理化学学报 27 425]

    [15]

    Hao S C, Wu J H, Fan L Q, Huang Y F, Lin J M, Wei Y L 2004 Sol. Energy 76 745

    [16]

    Xu W W, Dai S Y, Fang X Q, Hu L H, Kong F T, Pan X, Wang K J 2005 Acta Phys. Sin. 54 5943 (in Chinese) [徐炜炜, 戴松元, 方霞琴, 胡林华, 孔凡太, 潘旭, 王孔嘉 2005 物理学报 54 5943]

    [17]

    Yang S M, Huang Y Y, Huang C H, Zhao X S 2002 Chem. Mater. 14 1500

    [18]

    Xu W W, Dai S Y, Hu L H, Liang L Y, Wang K J 2006 Chin. Phys. Lett. 23 2288

    [19]

    Hu L H, Dai S Y, Wang K J 2005 Acta Phys. Sin. 54 1914 (in Chinese) [胡林华, 戴松元, 王孔嘉 2005 物理学报 54 1914]

    [20]

    Dai S Y, Kong F T, Hu L H, Shi C W, Fang X Q, Pan X, Wang K J 2005 Acta Phys. Sin. 54 1919 (in Chinese) [戴松元, 孔凡太, 胡林华, 史成武, 方霞琴, 潘旭, 王孔嘉 2005 物理学报 54 1919]

    [21]

    Stathatos E, Lianos P, Zakeeruddin S M, Liska P, Gräztel M 2003 Chem. Mater. 15 1825

    [22]

    Peter L M, Wijayantha K G U 2000 Electrochim. Acta 45 4543

    [23]

    Kern R, Sastrawan R, Ferber J, Stangl R, Luther J 2002 Electrochim. Acta 47 4213

  • [1] Liang Lin-Yun, Chen Chong, Wang Kong-Jia, Wang Ming-Tai, Guo Li, Kong Ming-Guang. Electron transport in solid-state dye-sensitized solar cells based on polyaniline. Acta Physica Sinica, 2007, 56(7): 4270-4276. doi: 10.7498/aps.56.4270
    [2] Xu Shuang-Ying, Hu Lin-Hua, Li Wen-Xin, Dai Song-Yuan. Effect of interface contacts between TiO2 particles on electron transport in dye-sensitized solar cells. Acta Physica Sinica, 2011, 60(11): 116802. doi: 10.7498/aps.60.116802
    [3] Hari Bala, Shi Lan, Jiang Lei, Guo Jin-Yu, Yuan Guang-Yu, Wang Li-Bo, Liu Zong-Rui. Preparation of lamina-shape TiO2 nanoarray electrode and its electron transport in dye-sensitized solar cells. Acta Physica Sinica, 2011, 60(8): 088101. doi: 10.7498/aps.60.088101
    [4] Kou Dong-Xing, Jiang Nian-Quan, Liu Wei-Qing, Hu Lin-Hua, Huang Yang, Dai Song-Yuan. Processes of charge transport and transfer in dye-sensitized solar cell by electrical and optical modulation techniques. Acta Physica Sinica, 2010, 59(7): 5141-5147. doi: 10.7498/aps.59.5141
    [5] Hou Qing-Yu, Zhang Yue, Zhang Tao. First principle study on the electron life span of degenerate anatase phase TiO2 semi-conductor with high concentration of oxygen vacancies. Acta Physica Sinica, 2008, 57(5): 3155-3159. doi: 10.7498/aps.57.3155
    [6] Li Cong, Hou Qing-Yu, Zhang Zhen-Duo, Zhang Bing. First-principles study on the doped concentration effect on electron lifespan and absorption spectrum of Eu-doping anatase TiO2. Acta Physica Sinica, 2012, 61(7): 077102. doi: 10.7498/aps.61.077102
    [7] Zhang Yuan, Zhao Ying, Cai Ning, Xiong Shao-Zhen. Preparation of anatase TiO2 nanotubes and their dye-sensitized solar cells. Acta Physica Sinica, 2008, 57(9): 5806-5809. doi: 10.7498/aps.57.5806
    [8] WANG JUN, LIU YI, DONG BAO-ZHONG, LI ZHI-HONG, GONG YAN-JUN, WU DONG, SUN YU-HAN. DETERMINATION OF THE AVERAGE THICKNESS OF INTERFACE LAYER WRAPPED ABOUT SiO2 SOLS BY SAXS. Acta Physica Sinica, 2001, 50(6): 1128-1131. doi: 10.7498/aps.50.1128
    [9] Liang Lin-Yun, Dai Song-Yuan, Fang Xia-Qin, Hu Lin-Hua. Research on the electron transport and back-reaction kinetics in TiO2 films applied in dye-sensitized solar cells. Acta Physica Sinica, 2008, 57(3): 1956-1962. doi: 10.7498/aps.57.1956
    [10] Liu Wei-Qing, Kou Dong-Xing, Hu Lin-Hua, Dai Song-Yuan. Effect of light path folding on the properties of electron transport in dyesensitized solar cell. Acta Physica Sinica, 2012, 61(16): 168201. doi: 10.7498/aps.61.168201
    [11] Xi Xiao-Wang, Hu Lin-Hua, Xu Wei-Wei, Dai Song-Yuan. Influence of TiCl4 nanoporous TiO2 films on the performance of dye-sensitized solar cells. Acta Physica Sinica, 2011, 60(11): 118203. doi: 10.7498/aps.60.118203
    [12] Liang Lin-Yun, Dai Song-Yuan, Hu Lin-Hua, Dai Jun, Liu Wei-Qing. Effect of TiO2 particle size on the properties of electron transport and back-reaction in dye-sensitized solar cells. Acta Physica Sinica, 2009, 58(2): 1338-1343. doi: 10.7498/aps.58.1338
    [13] Li Chang, Xue Wei, Han Chang-Feng, Qian Lei, Zhao Su-Ling, Yu Zhi-Nong, Zhang Ting, Wang Ling-Xue. Effect of ZnO electron-transport layer on light-soaking issue in inverted polymer solar cells. Acta Physica Sinica, 2015, 64(8): 088401. doi: 10.7498/aps.64.088401
    [14] Wu Yi-Yong, Yang De-Zhuang, He Shi-Yu, Hu Jian-Min, Qian Yong. Damage of electron irradiation to the GaInP/GaAs/Ge triple-junction solar cell. Acta Physica Sinica, 2009, 58(7): 5051-5056. doi: 10.7498/aps.58.5051
    [15] Qi Jia-Hong, Hu Jian-Min, Sheng Yan-Hui, Wu Yi-Yong, Xu Jian-Wen, Wang Yue-Yuan, YANG Xiao-Ming, Zhang Zi-Rui, Zhou Yang. Carrier transport mechanism of GaAs/Ge solar cells under electrons irradiation. Acta Physica Sinica, 2015, 64(10): 108802. doi: 10.7498/aps.64.108802
    [16] Xu Wei-Wei, Dai Song-Yuan, Fang Xia-Qin, Hu Lin-Hua, Kong Fan-Tai, Pan Xu, Wang Kong-Jia. Optimization of photoelectrode introduced to dye-sensitized solar cells by anodic oxidative hydrolysis. Acta Physica Sinica, 2005, 54(12): 5943-5948. doi: 10.7498/aps.54.5943
    [17] Dai Song-Yuan, Kong Fan-Tai, Hu Lin-Hua, Shi Cheng-Wu, Fang Xia-Qin, Pan Xu, Wang Kong-Jia. Investigation on the dye-sensitized solar cell. Acta Physica Sinica, 2005, 54(4): 1919-1926. doi: 10.7498/aps.54.1919
    [18] Zeng Long-Yue, Dai Song-Yuan, Wang Kong-Jia, Kong Fan-Tai, Hu Lin-Hua, Pan Xu, Shi Cheng-Wu. The mechanism of dye-sensitized solar cell based on nanocrystalline ZnO films. Acta Physica Sinica, 2005, 54(1): 53-57. doi: 10.7498/aps.54.53
    [19] Weng Jian, Xiao Shang-Feng, Chen Shuang-Hong, Dai Song-Yuan. Research on the dye-sensitized solar cell module. Acta Physica Sinica, 2007, 56(6): 3602-3606. doi: 10.7498/aps.56.3602
    [20] Kou Dong-Xing, Jiang Nian-Quan, Huang Yang, Dai Song-Yuan, Chen Shuang-Hong, Hu Lin-Hua, Kong Fan-Tai. Model for series resistance photovoltaic performance of large-scale dye-sensitized solar cells. Acta Physica Sinica, 2010, 59(1): 643-648. doi: 10.7498/aps.59.643
  • Citation:
Metrics
  • Abstract views:  1986
  • PDF Downloads:  2063
  • Cited By: 0
Publishing process
  • Received Date:  31 May 2011
  • Accepted Date:  28 April 2012
  • Published Online:  20 April 2012

Photoelectricity performance research based on the sol-modified thin film electrode of dye-sensitized solar cells

    Corresponding author: sydai@ipp.ac.cn
  • 1. Xinglin College, Nantong University, Nantong 226019, China;
  • 2. Key Laboratory of Novel Thin Film Solar Cells, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China
Fund Project:  Project supported by the State Key Development Program for Basic Research of China (Grant No. 2011CBA00700), the Major Program of Natural Science Basic Research of Institution of Higher Education of Jiangsu Province, China (Grant Nos. 08KJA510002, 10KJA140043), the Foundation of Key Laboratory of Novel Thin Film Solar Cells, Chinese Academy of Sciences (Grant No. KF201106), and the Scientific Research Foundation of Xinglin College, Nantong University, China (Grant No. 2010K122).

Abstract: Nanoporous film electrode is a crucial composition of dye-sensitized solar cells, which influences the photoelectric conversion performance. To improve the property of the photoelectrode, different modification methods by using different concentrations of TiO2 sol are investigated. The crystallite size and phase of the nanoporous TiO2 particles and the TiO2 sol after sintering are studied with X-ray diffraction. The microstructure morphologies of the conductive glass and the films are determined by the high resolution transmission electron microscopy and the field emission scanning electron microscopy. The influences on electron lifetime n and the electron transit time d are analyzed by intensity-modulated photocurrent spectroscopy and photovoltage spectroscopy from the mechanisms of electron transport and back reaction kinetics. It is found that the back reactions are well suppressed under dark conditions after sol modifications. n is effectively extended and d is also shorten correspondingly by any kind of sol treatment. The short-current density and the photoelectric conversion efficiency are increased by 10.9% and 11.9% separately, when 0.10 molL-1 sol modification is applied both to the conductive glass and to the nanoporous TiO2 film at the same time.

Reference (23)

Catalog

    /

    返回文章
    返回