Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of point defects on copper precipitation in heavily boron-doped Czochralski silicon p/p+ epitaxial wafer

Ji Chuan Xu Jin

Effect of point defects on copper precipitation in heavily boron-doped Czochralski silicon p/p+ epitaxial wafer

Ji Chuan, Xu Jin
PDF
Get Citation
  • The effect of point defects on copper precipitation in heavily boron-doped Czochralski silicon epitaxial wafer is systematically investigated by optical microscopy. The samples first experience the rapid thermal processing (RTP) in different atmospheres, and then are Cu-contaminated at different temperatures. It is found that RTP in O2 ambient leads to a low density of copper precipitation in the p+ substrate, however, high density of copper precipitation is observed in the sample subjected to RTP in Ar or N2 ambient. Additionally, in all of the samples, no defects are found in the epitaxial layer. On the basis of the experiments, it can be concluded that interstitial silicon will prevent the process of copper precipitation while vacancy has an opposite effect. Furthermore, p/p+ epitaxial structure could absorb copper impurities, thereby keeping the epitaxial layer free of defect.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 50902116) and the Scientific and Technological Innovation Platform of Fujian Province, China (Grant No. 2009J1009).
    [1]

    Toshinori T, Huang X M, Masayoshi K, Tomio K, Tatsuo F, Keigo H 1999 Jpn. J. Appl. Phys. 38 223

    [2]

    Shimura F, Willardson R K, Beer A C, Weber E R 1994 Oxygen in Silicon, Series: Semiconductors and Semimetals (Vol. 42) (Boston, MA: Academic Press) p 41

    [3]

    Xu J, Li F L, Yang D R 2007 Acta Phys. Sin. 56 4113 (in Chinese) [徐进, 李福龙, 杨德仁2007 物理学报 56 4113]

    [4]

    Cui C, Ma X Y, Yang D R 2008 Acta Phys. Sin. 57 1037 (in Chinese) [崔灿, 马向阳, 杨德仁2008 物理学报 57 1037]

    [5]

    Li C L, Ma X Y, Xu J, Yu X G, Yang D R, Que D L 2003 Jpn. J. Appl. Phys. 42 7290

    [6]

    Xi Z Q, Yang D R, Xu J, Ji Y J, Que D L, Moeller H J 2003 Appl. Phys. Lett. 83 3048

    [7]

    Istratov A A , Weber E R 1998 Appl Phys. A 66 123

    [8]

    Xu J, Yang D R, Moeller H J 2007 J. Appl. Phys. 102 114506

    [9]

    Pagani M, Falster R J, Fisher G R, Ferrero G C, Olmo M 1997 Appl. Phys. Lett. 70 1572

    [10]

    Vorokov V V, Falster R 2002 J. Electrochem. Soc. 149 167

    [11]

    Xu J, Wang W Q, Yang D R, Moeller H J 2008 J. Alloys Compd. 478 758

    [12]

    Andrei A, Istratov A A, Weber E R 2002 J. Electrochem Soc. 149 21

    [13]

    McHugo S A, Mohammed A, Thompson A C, Lai B, Cai Z 2002 J. Appl. Phys. 91 6396

    [14]

    Xu J, Wang Y Z, Yang D R, Moeller H J 2010 J. Alloys Compd. 502 351

    [15]

    Xi Z Q, Yang D R, Chen J, Xu J, Ji Y J, Que D L, Moeller H J 2004 Semicond. Sci. Technol. 19 299

    [16]

    Shen B, Jablonski J, Sekeguchi T, Sumino K 1996 Jpn. J. Appl. Phys. 35 4187

    [17]

    Borghesi A, Pivac B, Sassella A, Stella A 1995 J. Appl. Phys. 77 4169

    [18]

    Akhmetov V, Kissinger G, von Ammon W 2009 Physica B 404 4572

    [19]

    Xu J, Yang D R, Chu J 2004 Acta Phys. Sin. 53 550 (in Chinese) [徐进, 杨德仁, 储佳2004 物理学报 53 550]

    [20]

    McHugo S A, Flink C 2000 Appl. Phys. Lett. 77 3598

    [21]

    Kola R R, Rozgonyi G A, Li J, Rogers W B, Tan T Y, Bean K E, Lindberg K 1989 Appl. Phys. Lett. 55 2108

    [22]

    Wang Y Z, Xu J, Wang N T, Ji C, Zhang G C 2012 Acta Phys. Sin. 61 016105 (in Chinese) [王永志, 徐进, 王娜婷, 吉川, 张光超 2012 物理学报 61 016105]

  • [1]

    Toshinori T, Huang X M, Masayoshi K, Tomio K, Tatsuo F, Keigo H 1999 Jpn. J. Appl. Phys. 38 223

    [2]

    Shimura F, Willardson R K, Beer A C, Weber E R 1994 Oxygen in Silicon, Series: Semiconductors and Semimetals (Vol. 42) (Boston, MA: Academic Press) p 41

    [3]

    Xu J, Li F L, Yang D R 2007 Acta Phys. Sin. 56 4113 (in Chinese) [徐进, 李福龙, 杨德仁2007 物理学报 56 4113]

    [4]

    Cui C, Ma X Y, Yang D R 2008 Acta Phys. Sin. 57 1037 (in Chinese) [崔灿, 马向阳, 杨德仁2008 物理学报 57 1037]

    [5]

    Li C L, Ma X Y, Xu J, Yu X G, Yang D R, Que D L 2003 Jpn. J. Appl. Phys. 42 7290

    [6]

    Xi Z Q, Yang D R, Xu J, Ji Y J, Que D L, Moeller H J 2003 Appl. Phys. Lett. 83 3048

    [7]

    Istratov A A , Weber E R 1998 Appl Phys. A 66 123

    [8]

    Xu J, Yang D R, Moeller H J 2007 J. Appl. Phys. 102 114506

    [9]

    Pagani M, Falster R J, Fisher G R, Ferrero G C, Olmo M 1997 Appl. Phys. Lett. 70 1572

    [10]

    Vorokov V V, Falster R 2002 J. Electrochem. Soc. 149 167

    [11]

    Xu J, Wang W Q, Yang D R, Moeller H J 2008 J. Alloys Compd. 478 758

    [12]

    Andrei A, Istratov A A, Weber E R 2002 J. Electrochem Soc. 149 21

    [13]

    McHugo S A, Mohammed A, Thompson A C, Lai B, Cai Z 2002 J. Appl. Phys. 91 6396

    [14]

    Xu J, Wang Y Z, Yang D R, Moeller H J 2010 J. Alloys Compd. 502 351

    [15]

    Xi Z Q, Yang D R, Chen J, Xu J, Ji Y J, Que D L, Moeller H J 2004 Semicond. Sci. Technol. 19 299

    [16]

    Shen B, Jablonski J, Sekeguchi T, Sumino K 1996 Jpn. J. Appl. Phys. 35 4187

    [17]

    Borghesi A, Pivac B, Sassella A, Stella A 1995 J. Appl. Phys. 77 4169

    [18]

    Akhmetov V, Kissinger G, von Ammon W 2009 Physica B 404 4572

    [19]

    Xu J, Yang D R, Chu J 2004 Acta Phys. Sin. 53 550 (in Chinese) [徐进, 杨德仁, 储佳2004 物理学报 53 550]

    [20]

    McHugo S A, Flink C 2000 Appl. Phys. Lett. 77 3598

    [21]

    Kola R R, Rozgonyi G A, Li J, Rogers W B, Tan T Y, Bean K E, Lindberg K 1989 Appl. Phys. Lett. 55 2108

    [22]

    Wang Y Z, Xu J, Wang N T, Ji C, Zhang G C 2012 Acta Phys. Sin. 61 016105 (in Chinese) [王永志, 徐进, 王娜婷, 吉川, 张光超 2012 物理学报 61 016105]

  • [1] High-speed and large-scale light-sheet microscopy with electrically tunable lens. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191908
    [2] Wang Lin, Wei Lai, Wang Zheng-Xiong. Effect of out-of-plane driving flow on formation of plasmoids in current sheet system. Acta Physica Sinica, 2020, 69(5): 059401. doi: 10.7498/aps.69.20191612
    [3] Effect of Swift Heavy Ions Irradiation on the Microstructure and Current-Carrying Capability in YBa2Cu3O7-δ High Temperature Superconductor Films. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191914
  • Citation:
Metrics
  • Abstract views:  3395
  • PDF Downloads:  545
  • Cited By: 0
Publishing process
  • Received Date:  26 April 2012
  • Accepted Date:  25 June 2012
  • Published Online:  05 December 2012

Effect of point defects on copper precipitation in heavily boron-doped Czochralski silicon p/p+ epitaxial wafer

  • 1. College of Materials, Xiamen University, Xiamen 361005, China;
  • 2. Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen 361005, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 50902116) and the Scientific and Technological Innovation Platform of Fujian Province, China (Grant No. 2009J1009).

Abstract: The effect of point defects on copper precipitation in heavily boron-doped Czochralski silicon epitaxial wafer is systematically investigated by optical microscopy. The samples first experience the rapid thermal processing (RTP) in different atmospheres, and then are Cu-contaminated at different temperatures. It is found that RTP in O2 ambient leads to a low density of copper precipitation in the p+ substrate, however, high density of copper precipitation is observed in the sample subjected to RTP in Ar or N2 ambient. Additionally, in all of the samples, no defects are found in the epitaxial layer. On the basis of the experiments, it can be concluded that interstitial silicon will prevent the process of copper precipitation while vacancy has an opposite effect. Furthermore, p/p+ epitaxial structure could absorb copper impurities, thereby keeping the epitaxial layer free of defect.

Reference (22)

Catalog

    /

    返回文章
    返回