Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Spatial optical soliton pairs in a quantum dot with exciton-biexciton coherence

Zeng Kuan-Hong Wang Deng-Long She Yan-Chao Zhang Wei-Xi

Spatial optical soliton pairs in a quantum dot with exciton-biexciton coherence

Zeng Kuan-Hong, Wang Deng-Long, She Yan-Chao, Zhang Wei-Xi
PDF
Get Citation
  • Considering the exciton-biexciton coherence, we analytically study the linear absorption and nonlinear propagation properties of the probe and signal field in a semiconductor quantum dot. It is found that in the linear case, in the system takes place an electromagnetically induced transparency phenomenon. Furthermore, we obtain that in the system there occurs one- or two-transparency window, or optical gain, which is controlled by adjusting the coupling control field. For the nonlinear case, the weak probe field, which is induced by a signal field, splits into two parts. When their excited self-Kerr and cross-Kerr nonlinear effects balance the refractive effect of the beam, the system exhibits bright-bright, bright-dark, dark-bright, dark-dark soliton pairs.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51032002), the Scientific Research Fund of Hunan Provincial Education Department of China (Grant No. 12A140), and the Science and Technology Foundation of Guizhou Province of China (Grant Nos. J20112219, J20122314).
    [1]

    Segev M 1998 Opt. Quantum Electron. 30 503

    [2]

    Segev M,Stegeman G I 1998 Phys. Today 51 48

    [3]

    Chen Z G, Segev M, Christodoulides D N 2012 Rep. Prog. Phys. 75 086401

    [4]

    Hang C, Konotop V V, Huang G X 2009 Phys. Rev. A 79 033826

    [5]

    Huang G X, Deng L, Payne M G 2005 Phys. Rev. E 72 016617

    [6]

    Hu W, Ouyang S G, Yang P B, Guo Q, Lan S 2008 Phys. Rev. A 77 033842

    [7]

    Kivshar Y S, Yang X P 1994 Phys. Rev. E 50 40(R)

    [8]

    Hang C, Huang G X, Deng L 2006 Phys. Rev. E 74 046601

    [9]

    Hu B, Huang G X, Velarde M G 2000 Phys. Rev. E 62 2827

    [10]

    Stegeman G I, Segev M 1999 Science 286 1518

    [11]

    Kang J U, Stegeman G I, Aitchison J S, Akhmediev N 1996 Phys. Rev. Lett. 76 3699

    [12]

    Zhang H, Tang D Y, Zhao L M, Wu X 2009 Phys. Rev. B 80 052302

    [13]

    Delqué M, Sylvestre T, Maillotte H, Cambournac C, Kockaert P, Haelterman M 2005 Opt. Lett. 30 3383

    [14]

    Zhang Y, Hou C F, Sun X D 2007 Chin. Phys. 16 159

    [15]

    Liu J S, Zhang D Y, Liang C H 2000 Chin. Phys. 9 667

    [16]

    Chen Z G, Segev M, Coskun T H, Christodoulides D N 1996 Opt. Lett. 21 1436

    [17]

    Huang G X, Jiang K J, Payne M G, Deng L 2006 Phys. Rev. E 73 056606

    [18]

    Xie X T, Li W B, Yang X X 2006 J. Opt. Soc. Am. B 23 1609

    [19]

    She Y C, Wang D L, Ding J W 2009 Acta Phys. Sin. 58 3198 (in Chinese) [佘彦超, 王登龙, 丁建文 2009 物理学报 58 3198]

    [20]

    She Y C, Zhang W X, Wang D L 2011 Acta Phys. Sin. 60 064205 (in Chinese) [佘彦超, 张蔚曦, 王登龙 2011 物理学报 60 064205]

    [21]

    Si L G, Yang W X, Yang X X 2009 J. Opt. Soc. Am. B 26 478

    [22]

    Wu Y, Deng L 2004 Phys. Rev. Lett. 93 143904

    [23]

    Wu Y 2005 Phys. Rev. A 71 053820

    [24]

    Wu Y, Deng L 2004 Opt. Lett. 29 2064

    [25]

    Ding C L, Hao X Y, Yang X X 2010 Phys. Lett. A 374 680

    [26]

    Hao X Y, Zheng A T, Wang Y, Li X G 2012 Commun. Theor. Phys. 57 866

    [27]

    Yang W X, Chen A X, Lee R K, Wu Y 2011 Phys. Rev. A 84 013835

    [28]

    Li J H, Yu R, Huang P, Yang X X 2009 Phys. Lett. A 373 554

    [29]

    Sun H, Feng X L, Gong S Q, Oh C H 2009 Phys. Rev. B 79 193404

    [30]

    Luo J, Lai W, Lu D, Du C L, Liu Y W, Gong S Q, Shi D N, Guo C L 2012 J. Phys. B: At. Mol. Opt. Phys. 45 035402

    [31]

    Wu F, Tian W, Ma i N, Chen W J, Zhang G L, Zhao G F, Cao S D, Xie W 2008 Chin. Phys. Lett. 25 1461

    [32]

    Guo R H, Shi H Y, Sun X D 2004 Chin. Phys. 13 2141

    [33]

    Zhang G Q, Chen C, Gao F, Bo F, Liu J B, Xu J J, Tu Y F 2007 Physics 36 399

    [34]

    Gammon D, Snow E S, Shanabrook B V, Katzer D S, Park D 1996 Science 273 87

    [35]

    Brunner K, Abstreiter G, Böhm G, Tränkle, Weimann G 1994 Phys. Rev. Lett. 73 1138

    [36]

    Luo B, Hang C, Li H J, Huang G X 2010 Chin. Phys. B 19 054214

    [37]

    Li L, Huang G X 2010 Phys. Rev. A 82 023809

    [38]

    Li H J, Huang G X 2008 Phys. Lett. A 372 4127

  • [1]

    Segev M 1998 Opt. Quantum Electron. 30 503

    [2]

    Segev M,Stegeman G I 1998 Phys. Today 51 48

    [3]

    Chen Z G, Segev M, Christodoulides D N 2012 Rep. Prog. Phys. 75 086401

    [4]

    Hang C, Konotop V V, Huang G X 2009 Phys. Rev. A 79 033826

    [5]

    Huang G X, Deng L, Payne M G 2005 Phys. Rev. E 72 016617

    [6]

    Hu W, Ouyang S G, Yang P B, Guo Q, Lan S 2008 Phys. Rev. A 77 033842

    [7]

    Kivshar Y S, Yang X P 1994 Phys. Rev. E 50 40(R)

    [8]

    Hang C, Huang G X, Deng L 2006 Phys. Rev. E 74 046601

    [9]

    Hu B, Huang G X, Velarde M G 2000 Phys. Rev. E 62 2827

    [10]

    Stegeman G I, Segev M 1999 Science 286 1518

    [11]

    Kang J U, Stegeman G I, Aitchison J S, Akhmediev N 1996 Phys. Rev. Lett. 76 3699

    [12]

    Zhang H, Tang D Y, Zhao L M, Wu X 2009 Phys. Rev. B 80 052302

    [13]

    Delqué M, Sylvestre T, Maillotte H, Cambournac C, Kockaert P, Haelterman M 2005 Opt. Lett. 30 3383

    [14]

    Zhang Y, Hou C F, Sun X D 2007 Chin. Phys. 16 159

    [15]

    Liu J S, Zhang D Y, Liang C H 2000 Chin. Phys. 9 667

    [16]

    Chen Z G, Segev M, Coskun T H, Christodoulides D N 1996 Opt. Lett. 21 1436

    [17]

    Huang G X, Jiang K J, Payne M G, Deng L 2006 Phys. Rev. E 73 056606

    [18]

    Xie X T, Li W B, Yang X X 2006 J. Opt. Soc. Am. B 23 1609

    [19]

    She Y C, Wang D L, Ding J W 2009 Acta Phys. Sin. 58 3198 (in Chinese) [佘彦超, 王登龙, 丁建文 2009 物理学报 58 3198]

    [20]

    She Y C, Zhang W X, Wang D L 2011 Acta Phys. Sin. 60 064205 (in Chinese) [佘彦超, 张蔚曦, 王登龙 2011 物理学报 60 064205]

    [21]

    Si L G, Yang W X, Yang X X 2009 J. Opt. Soc. Am. B 26 478

    [22]

    Wu Y, Deng L 2004 Phys. Rev. Lett. 93 143904

    [23]

    Wu Y 2005 Phys. Rev. A 71 053820

    [24]

    Wu Y, Deng L 2004 Opt. Lett. 29 2064

    [25]

    Ding C L, Hao X Y, Yang X X 2010 Phys. Lett. A 374 680

    [26]

    Hao X Y, Zheng A T, Wang Y, Li X G 2012 Commun. Theor. Phys. 57 866

    [27]

    Yang W X, Chen A X, Lee R K, Wu Y 2011 Phys. Rev. A 84 013835

    [28]

    Li J H, Yu R, Huang P, Yang X X 2009 Phys. Lett. A 373 554

    [29]

    Sun H, Feng X L, Gong S Q, Oh C H 2009 Phys. Rev. B 79 193404

    [30]

    Luo J, Lai W, Lu D, Du C L, Liu Y W, Gong S Q, Shi D N, Guo C L 2012 J. Phys. B: At. Mol. Opt. Phys. 45 035402

    [31]

    Wu F, Tian W, Ma i N, Chen W J, Zhang G L, Zhao G F, Cao S D, Xie W 2008 Chin. Phys. Lett. 25 1461

    [32]

    Guo R H, Shi H Y, Sun X D 2004 Chin. Phys. 13 2141

    [33]

    Zhang G Q, Chen C, Gao F, Bo F, Liu J B, Xu J J, Tu Y F 2007 Physics 36 399

    [34]

    Gammon D, Snow E S, Shanabrook B V, Katzer D S, Park D 1996 Science 273 87

    [35]

    Brunner K, Abstreiter G, Böhm G, Tränkle, Weimann G 1994 Phys. Rev. Lett. 73 1138

    [36]

    Luo B, Hang C, Li H J, Huang G X 2010 Chin. Phys. B 19 054214

    [37]

    Li L, Huang G X 2010 Phys. Rev. A 82 023809

    [38]

    Li H J, Huang G X 2008 Phys. Lett. A 372 4127

  • [1] Huang Yong-Feng, Cao Huai-Xin, Wang Wen-Hua. Conjugate linear symmetry and its application to \begin{document}$ {\mathcal{P}}{\mathcal{T}} $\end{document}-symmetry quantum theory. Acta Physica Sinica, 2020, 69(3): 030301. doi: 10.7498/aps.69.20191173
    [2] Current Phases in Hofstadter Ladder with Staggered Hopping. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191964
    [3] Guo Hui, Wang Ya-Jun, Wang Lin-Xue, Zhang Xiao-Fei. Dynamics of ring dark solitons in Bose-Einstein condensates. Acta Physica Sinica, 2020, 69(1): 010302. doi: 10.7498/aps.69.20191424
    [4] Internal dynamic detection of soliton molecules in a Ti: sapphire femtosecond laser. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191989
    [5] High-speed and large-scale light-sheet microscopy with electrically tunable lens. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191908
    [6] Liao Tian-Jun, Lü Yi-Xiang. Thermodynamic limit and optimal performance prediction of thermophotovoltaic energy conversion devices. Acta Physica Sinica, 2020, 69(5): 057202. doi: 10.7498/aps.69.20191835
    [7] Control of spiral waves in excitable media under polarized electric fields. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191934
    [8] Dong Zheng-Qiong, Zhao Hang, Zhu Jin-Long, Shi Ya-Ting. Influence of incident illumination on optical scattering measurement of typical photoresist nanostructure. Acta Physica Sinica, 2020, 69(3): 030601. doi: 10.7498/aps.69.20191525
    [9] The influence of the secondary electron emission characteristic of dielectric materials on the microwave breakdown. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20200026
    [10] Wang Lin, Wei Lai, Wang Zheng-Xiong. Effect of out-of-plane driving flow on formation of plasmoids in current sheet system. Acta Physica Sinica, 2020, 69(5): 059401. doi: 10.7498/aps.69.20191612
    [11] Liu Jia-He, Lu Jia-Zhe, Lei Jun-Jie, Gao Xun, Lin Jing-Quan. Effect of ambient gas pressure on characteristics of air plasma induced by nanosecond laser. Acta Physica Sinica, 2020, 69(5): 057401. doi: 10.7498/aps.69.20191540
    [12] Ren Xian-Li, Zhang Wei-Wei, Wu Xiao-Yong, Wu Lu, Wang Yue-Xia. Prediction of short range order in high-entropy alloys and its effect on the electronic, magnetic and mechanical properties. Acta Physica Sinica, 2020, 69(4): 046102. doi: 10.7498/aps.69.20191671
    [13] Effect of Swift Heavy Ions Irradiation on the Microstructure and Current-Carrying Capability in YBa2Cu3O7-δ High Temperature Superconductor Films. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191914
  • Citation:
Metrics
  • Abstract views:  603
  • PDF Downloads:  410
  • Cited By: 0
Publishing process
  • Received Date:  08 January 2013
  • Accepted Date:  03 February 2013
  • Published Online:  20 July 2013

Spatial optical soliton pairs in a quantum dot with exciton-biexciton coherence

  • 1. Department of Physics, Xiangtan University, Xiangtan 411105, China;
  • 2. Department of Physics and Electronic Science, Tongren University, Tongren 554300, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 51032002), the Scientific Research Fund of Hunan Provincial Education Department of China (Grant No. 12A140), and the Science and Technology Foundation of Guizhou Province of China (Grant Nos. J20112219, J20122314).

Abstract: Considering the exciton-biexciton coherence, we analytically study the linear absorption and nonlinear propagation properties of the probe and signal field in a semiconductor quantum dot. It is found that in the linear case, in the system takes place an electromagnetically induced transparency phenomenon. Furthermore, we obtain that in the system there occurs one- or two-transparency window, or optical gain, which is controlled by adjusting the coupling control field. For the nonlinear case, the weak probe field, which is induced by a signal field, splits into two parts. When their excited self-Kerr and cross-Kerr nonlinear effects balance the refractive effect of the beam, the system exhibits bright-bright, bright-dark, dark-bright, dark-dark soliton pairs.

Reference (38)

Catalog

    /

    返回文章
    返回