Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Improving the mobility of the amorphous silicon TFT with the new stratified structure by PECVD

Yu Yao Zhang Jing-Si Chen Dai-Dai Guo Rui-Qian Gu Zhi-Hua

Improving the mobility of the amorphous silicon TFT with the new stratified structure by PECVD

Yu Yao, Zhang Jing-Si, Chen Dai-Dai, Guo Rui-Qian, Gu Zhi-Hua
PDF
Get Citation
  • The amorphous silicon TFT (α-Si thin film transistor) were fabricated in a new structure, in which the ohmic contact layer (n+ layer) and the nitride silicon insulating layer for grid (G-SiNx) were stratified. Various factors which affect the electron mobility of α-Si TFT are studied using orthogonal test. With the increase in the number of n+ layer, the electronic mobility also rises. Besides, G-SiNx should be stratified into a rapid deposition film (GH) and a low-speed growing film (GL). The thickness of GL should be increased, with the thickness of GH reduced accordingly to achieve the electron mobility gradually increasing. Finally, based on the experimental results in the orthogonal combination experiments, the α-Si TFT mobility can stably reach 0.66 cm2/V·s, much higher than the traditional volume production data (0.29 cm2/V·s).
    [1]

    Lilienfeld J E 1933 US Pat. 1,900 018

    [2]

    Heil O 1935 Brit. Pat. BP439 457

    [3]

    Shockley W 1952 Proc. IEEE 40 1365

    [4]

    Weimer P K 1962 textitProc. IEEE 50 1462

    [5]

    Shallcross F V 1963 Proc. IEEE 51 851

    [6]

    LeComber P G, Spear W E, Ghaith A 1979 Electron. Lett. 15 179

    [7]

    Spear W E, LeComber P G, Kinmond S, Brodsky M H 1976 Appl. Phys. Lett. 28 105

    [8]

    Zhang X D, Zhao Y, Gao Y T 2005 Acta Phys. Sin. 54 3910 (in Chinese) [张晓丹, 赵颖, 高艳涛 2005 物理学报 54 391]

    [9]

    Li J, Wu C Y, Zhao S Y 2006 Acta Phys. Sin. 55 6612 (in Chinese) [李娟, 吴春亚, 赵淑云 2006 物理学报 55 6612]

    [10]

    Hoffman R L, Norris B J, Wager J F 2003 Appl. Phys. Lett. 82 733

    [11]

    Hidenori Hiramatsu, Kazushige Ueda, Hiromichi Ohta, Toshio Kamiya, Masahiro Hirano, Hideo Hosono 2005 Appl. Phys. Lett. 87 211107

    [12]

    Liu Z J, Meng Z G, Zhao S Y 2010 Acta Phys. Sin. 59 2775 (in Chinese) [刘召军, 孟志国, 赵淑云 2010 物理学报 59 2775]

    [13]

    Qiang Lei,Yao Ruo-He 2012 Acta Phys. Sin. 61 087303 (in Chinese) [强蕾, 姚若河 2012 物理学报 61 087303]

    [14]

    He Y, Hattori R, Kanicki J 2000 IEEE Electron Dev. Lett. 21 590

    [15]

    Chen X X, Yao R H 2012 Acta Phys. Sin. 61 237104 (in Chinese) [陈晓雪, 姚若河 2012 物理学报 61 237104]

    [16]

    Nathan A, Kumar A, Sakariya A, Servati P 2004 IEEE J. Solid-State Circuits 39 1477

    [17]

    Stryahilev D, Sazonov A, Nathan A 2002 J. Vac. Sci. Technol. A 20 1087

    [18]

    Zhu M F, Xu Z Y 1989 Acta Phys. Sin. 38 1988 (in Chinese) [朱美芳, 许政一 1989 物理学报 38 1995]

    [19]

    Gu Z H 2007 Manufacturing Technology of Thin Film Transistor (TFT) Array (Shanghai: Fudan University Press) pp36-43 (in Chinese) [谷至华 2007 薄膜晶体管 (TFT) 阵列制造技术, 第一版 (上海: 复旦大学出版社) 第36–43 页]

    [20]

    Nair V N 1992 Technometrics 34 127

    [21]

    Shur M, Hack M 1984 J. Appl. Phys. 55 3831

    [22]

    Shur M, Hack M, Shaw J G 1989 J. Appl. Phys. 66 3371

    [23]

    Cherie R Kand, Paul Andry (Translated by Liao Y P and Wang J) 2008 Thin-Film Transistors (Beijing: Electronics Industry Press) pp31-33

    [24]

    Xie Z Y, Long C P, Deng C Y, Lin C W 2007 Chinese Journal of Vaccum Science and Technology 27 341

    [25]

    LeComber P G, Spear W E, Ghaith A 1979 Electron. Lett. 15 179

  • [1]

    Lilienfeld J E 1933 US Pat. 1,900 018

    [2]

    Heil O 1935 Brit. Pat. BP439 457

    [3]

    Shockley W 1952 Proc. IEEE 40 1365

    [4]

    Weimer P K 1962 textitProc. IEEE 50 1462

    [5]

    Shallcross F V 1963 Proc. IEEE 51 851

    [6]

    LeComber P G, Spear W E, Ghaith A 1979 Electron. Lett. 15 179

    [7]

    Spear W E, LeComber P G, Kinmond S, Brodsky M H 1976 Appl. Phys. Lett. 28 105

    [8]

    Zhang X D, Zhao Y, Gao Y T 2005 Acta Phys. Sin. 54 3910 (in Chinese) [张晓丹, 赵颖, 高艳涛 2005 物理学报 54 391]

    [9]

    Li J, Wu C Y, Zhao S Y 2006 Acta Phys. Sin. 55 6612 (in Chinese) [李娟, 吴春亚, 赵淑云 2006 物理学报 55 6612]

    [10]

    Hoffman R L, Norris B J, Wager J F 2003 Appl. Phys. Lett. 82 733

    [11]

    Hidenori Hiramatsu, Kazushige Ueda, Hiromichi Ohta, Toshio Kamiya, Masahiro Hirano, Hideo Hosono 2005 Appl. Phys. Lett. 87 211107

    [12]

    Liu Z J, Meng Z G, Zhao S Y 2010 Acta Phys. Sin. 59 2775 (in Chinese) [刘召军, 孟志国, 赵淑云 2010 物理学报 59 2775]

    [13]

    Qiang Lei,Yao Ruo-He 2012 Acta Phys. Sin. 61 087303 (in Chinese) [强蕾, 姚若河 2012 物理学报 61 087303]

    [14]

    He Y, Hattori R, Kanicki J 2000 IEEE Electron Dev. Lett. 21 590

    [15]

    Chen X X, Yao R H 2012 Acta Phys. Sin. 61 237104 (in Chinese) [陈晓雪, 姚若河 2012 物理学报 61 237104]

    [16]

    Nathan A, Kumar A, Sakariya A, Servati P 2004 IEEE J. Solid-State Circuits 39 1477

    [17]

    Stryahilev D, Sazonov A, Nathan A 2002 J. Vac. Sci. Technol. A 20 1087

    [18]

    Zhu M F, Xu Z Y 1989 Acta Phys. Sin. 38 1988 (in Chinese) [朱美芳, 许政一 1989 物理学报 38 1995]

    [19]

    Gu Z H 2007 Manufacturing Technology of Thin Film Transistor (TFT) Array (Shanghai: Fudan University Press) pp36-43 (in Chinese) [谷至华 2007 薄膜晶体管 (TFT) 阵列制造技术, 第一版 (上海: 复旦大学出版社) 第36–43 页]

    [20]

    Nair V N 1992 Technometrics 34 127

    [21]

    Shur M, Hack M 1984 J. Appl. Phys. 55 3831

    [22]

    Shur M, Hack M, Shaw J G 1989 J. Appl. Phys. 66 3371

    [23]

    Cherie R Kand, Paul Andry (Translated by Liao Y P and Wang J) 2008 Thin-Film Transistors (Beijing: Electronics Industry Press) pp31-33

    [24]

    Xie Z Y, Long C P, Deng C Y, Lin C W 2007 Chinese Journal of Vaccum Science and Technology 27 341

    [25]

    LeComber P G, Spear W E, Ghaith A 1979 Electron. Lett. 15 179

  • [1] The physics-based model of AlGaN/GaN high electron mobility transistor outer fringing capacitances. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191931
    [2] Investigate the effect of source-drain conduction in single-event transient on nanoscale bulk fin field effect transistor. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191896
    [3] Zhao Jian-Ning, Liu Dong-Huan, Wei Dong, Shang Xin-Chun. Thermal rectification mechanism of one-dimensional composite structure with interface thermal contact resistance. Acta Physica Sinica, 2020, 69(5): 056501. doi: 10.7498/aps.69.20191409
    [4] Liu Ying-Guang, Bian Yong-Qing, Han Zhong-He. Heat transport behavior of bicrystal ZnO containing tilt grain boundary. Acta Physica Sinica, 2020, 69(3): 033101. doi: 10.7498/aps.69.20190627
    [5] The influence of the secondary electron emission characteristic of dielectric materials on the microwave breakdown. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20200026
    [6] Luo Duan, Hui Dan-Dan, Wen Wen-Long, Li Li-Li, Xin Li-Wei, Zhong Zi-Yuan, Ji Chao, Chen Ping, He Kai, Wang Xing, Tian Jin-Shou. Design of femtosecond electron diffractometer with adjustable gap. Acta Physica Sinica, 2020, 69(5): 052901. doi: 10.7498/aps.69.20191157
    [7] Fang Wen-Yu, Zhang Peng-Cheng, Zhao Jun, Kang Wen-Bin. Electronic structure and photocatalytic properties of H, F modified two-dimensional GeTe. Acta Physica Sinica, 2020, 69(5): 056301. doi: 10.7498/aps.69.20191391
    [8] Ren Xian-Li, Zhang Wei-Wei, Wu Xiao-Yong, Wu Lu, Wang Yue-Xia. Prediction of short range order in high-entropy alloys and its effect on the electronic, magnetic and mechanical properties. Acta Physica Sinica, 2020, 69(4): 046102. doi: 10.7498/aps.69.20191671
    [9] Effect of Swift Heavy Ions Irradiation on the Microstructure and Current-Carrying Capability in YBa2Cu3O7-δ High Temperature Superconductor Films. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191914
    [10] Zhang Ya-Nan, Zhan Nan, Deng Ling-Ling, Chen Shu-Fen. Efficiency improvement in solution-processed multilayered phosphorescent white organic light emitting diodes by silica coated silver nanocubes. Acta Physica Sinica, 2020, 69(4): 047801. doi: 10.7498/aps.69.20191526
  • Citation:
Metrics
  • Abstract views:  1262
  • PDF Downloads:  1790
  • Cited By: 0
Publishing process
  • Received Date:  08 February 2013
  • Accepted Date:  29 April 2013
  • Published Online:  05 July 2013

Improving the mobility of the amorphous silicon TFT with the new stratified structure by PECVD

  • 1. Flat Panel Display Center of Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China;
  • 2. CATIC display company, Shanghai 201100, China

Abstract: The amorphous silicon TFT (α-Si thin film transistor) were fabricated in a new structure, in which the ohmic contact layer (n+ layer) and the nitride silicon insulating layer for grid (G-SiNx) were stratified. Various factors which affect the electron mobility of α-Si TFT are studied using orthogonal test. With the increase in the number of n+ layer, the electronic mobility also rises. Besides, G-SiNx should be stratified into a rapid deposition film (GH) and a low-speed growing film (GL). The thickness of GL should be increased, with the thickness of GH reduced accordingly to achieve the electron mobility gradually increasing. Finally, based on the experimental results in the orthogonal combination experiments, the α-Si TFT mobility can stably reach 0.66 cm2/V·s, much higher than the traditional volume production data (0.29 cm2/V·s).

Reference (25)

Catalog

    /

    返回文章
    返回