Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

PIC/MCC simulation of the ionization process of SWP influenced by gas pressure and SPP

Chen Zhao-Quan Xia Guang-Qing Liu Ming-Hai Zheng Xiao-Liang Hu Ye-Lin Li Ping Xu Gong-Lin Hong Ling-Li Shen Hao-Yu Hu Xi-Wei

PIC/MCC simulation of the ionization process of SWP influenced by gas pressure and SPP

Chen Zhao-Quan, Xia Guang-Qing, Liu Ming-Hai, Zheng Xiao-Liang, Hu Ye-Lin, Li Ping, Xu Gong-Lin, Hong Ling-Li, Shen Hao-Yu, Hu Xi-Wei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A surface-wave plasma (SWP) source based on surface plasmon polariton (SPP) has fine performances such as high density, low temperature, high production, and so on. It is applied in electronic device micro or nano processing, material modification, etc. Because the ionization of SWP heated by SPP is difficult to describe by theoretical analysis and experimental measurement, the ionization process of producing uniform stable SWP source is not yet well understood. The method in this paper is a numerical simulation of SWP discharges. The electromagnetic energy coupling mechanism of ionization process, influenced by gas pressure, which is studied by combining particle-in-cell (PIC) simulation of reciprocity between plasma and electromagnetic wave with Monte Carlo Collide (MCC) method in merit of dealing with particle collision. Simulated results suggest that the efficient production of SWP is induced by locally enhanced electric field of SPP, and the gas pressure influences the ionization process of SWP by altering the appearance time of wave-mode resonant conversion. Results of this paper show the ionization process of SWP discharge maintained by SPP, and further provide some advices for designing the parameter optimization of next generation meter-scale SWP source.
    • Funds: Project supported by the NationalNatural Science Foundation of China (Grant No. 11105002), the Open-End Fund of State Key Laboratory of Structural Analysis for Industrial Equipment (Grant No. GZ1215), the Natural Science Foundation for University in Anhui Province, China (Grant No. KJ2013A106), the Education Project of Creation and Innovation for College Students in China (Grant No. 201210361058), and the Doctoral Scientific Research Fund of AUST.
    [1]

    Sugai H, Ghanashev I, Nagatsu M 1998 Plasma Sources Sci. Technol. 7 192

    [2]

    Nagatsu M, Naito K, Ogino A, Nanko S 2006 Plasma Sources Sci. Technol. 15 37

    [3]

    Tian C, Nozawa T, Ishibasi K, Kameyama H, Morimoto T 2006 J. Vac. Sci. Technol. A 24 1421

    [4]

    Yasaka Y, Ishii N, Yamamoto T, Ando M, Takahashi M 2004 IEEE Trans. Plasma Sci. 32 101

    [5]

    Nagatsu M, Terashita F, Nonaka H, Xu L, Nagata T, Koide Y 2005 Appl. Phys. Lett. 86 211502

    [6]

    Xu L, Terashita F, Nonaka H, Ogino A, Nagata T, Koide Y, Nanko S, Kurawaki I, Nagatsu M 2006 J. Phys. D: Appl. Phys. 39 148

    [7]

    Kousaka H, Ono K, Umehara N, Sawada I, Ishibashi K 2006 Thin Solid Films 506-507 503

    [8]

    Wu T, Kou C 2005 Phys. Plasmas 12 103504

    [9]

    Xu X, Liu F, Zhou Q, Liang B, Liang Y, Liang R 2008 Appl. Phys. Lett. 92 011501

    [10]

    Wu C, Zhan R, Wen X, Huang W 2001 IEEE Trans. Plasma Sci. 29 13

    [11]

    Liang Y, Ou Q, Liang B, Liang R 2008 Chin. Phys. Lett. 25 1761

    [12]

    Liang B, Ou Q, Liang Y, Liang R 2007 Chin. Phys. 16 3732

    [13]

    Hu Y, Chen Z, Liu M, Hong L, Li P, Zheng X, Xia G, Hu X 2011 Chin. Phys. Lett. 28 115201

    [14]

    Chen Z, Liu M, Zhou Q, Hu Y, Yang A, Zhu L, Hu X 2011 Chin. Phys. Lett. 28 045201

    [15]

    Liu M, Sugai H, Hu X, Ishijima T, Jiang Z, Li B, Dan M 2006 Acta. Phys. Sin. 55 5905 (in Chinese) [刘明海, 菅井秀郎, 胡希伟, 石岛芳夫, 江中和, 李斌, 但敏 2006 物理学报 55 5905]

    [16]

    Chen Z, Liu M, Zhou P, Chen W, Lan C, Hu X 2008 Plasma Sci. Technol. 10 655

    [17]

    Chen Z, Liu M, Tang L, Hu P, Hu X 2009 J. Appl. Phys. 106 013314

    [18]

    Chen Z, Liu M, Tang L, Lv J, Wen Y, Hu X2009 J. Appl. Phys. 106 063304

    [19]

    Chen Z, Liu M, Lan C, Chen W, Luo Z, Hu X 2008 Chin. Phys. Lett. 25 4333

    [20]

    Chen Q, Aoyagi P H, Katsurai M 1999 IEEE Trans. Plasma Sci. 27 164

    [21]

    Toba T, Katsurai M 2002 IEEE Trans. Plasma Sci. 30 2095

    [22]

    Okamura Y, Yamamoto Y, Fujita K, Miyoshi T, Teramoto K, Kawaguchi H, Kagami S, Furukawa M 2007 J. Vac. Sci. Technol. A 25 816

    [23]

    Nagatsu M, Naito K, Ogino A, Ninomiya K, Nanko S 2005 Appl. Phys. Lett. 87 161501

    [24]

    Tatarova E, Dias F M, Henriques J, Ferreira C M 2005 IEEE Trans. Plasma Sci. 33 866

    [25]

    Henriques J, Tatarova E, Dias F M 2008 J. Appl. Phys. 103 103304

    [26]

    Chen Z, Liu M, Lan C, Chen W, Tang L, Luo Z, Yan B, Lv J, Hu X 2009 Chin. Phys. B 18 3484

    [27]

    Lan C, Lan C, Hu X, Chen Z, Liu M 2009 Chin. Phys. B 18 2412

    [28]

    Lan C, Chen Z, Liu M, Jiang Z, Hu X 2009 Plasma Sci. Technol. 11 66

    [29]

    Lan C, Hu X, Liu M 2011 Acta. Phys. Sin. 60 025205 (in Chinese) [蓝朝晖, 胡希伟, 刘明海 2011 物理学报 60 025205]

    [30]

    Jin X, Yang Z, Huang T 2007 Phys. Plasmas 14 113505

    [31]

    Jin X, Huang T, Liao P, Yang Z 2009 Acta. Phys. Sin. 58 5526 (in Chinese) [金晓林, 黄桃, 廖平, 杨中海 2009 物理学报 58 5526]

    [32]

    Liu M, Hu X, Yu G, Wu Q, Pan Y 2002 Plasma Sources Sci. Technol. 11 260

    [33]

    Boeuf J P, Chaudhury B, Zhu G 2010 Phys. Rev. Lett. 104 015002

    [34]

    Zhu G, Boeuf J P, Li J 2012 Acta. Phys. Sin. 61 235202 (in Chinese) [朱国强, Jean-Pierre Boeuf, 李进贤 2012 物理学报 61 235202]

    [35]

    Zhou Q, Dong Z, Chen J 2011 Acta. Phys. Sin. 60 125202 (in Chinese) [周前红, 董志伟, 陈京元 2011 物理学报 60 125202]

    [36]

    Yang J, Shi F, Yang T, Meng Z 2010 Acta. Phys. Sin. 59 8701 (in Chinese) [杨涓, 石峰, 杨铁链, 孟志强 2010 物理学报 59 8701]

    [37]

    Chen M, Mao G, Xia G, Yang J, Sun A 2012 Propulsion Technology 33 150 (in Chinese) [陈茂林, 毛根旺, 夏广庆, 杨涓, 孙安邦 2012 推进技术 33 150]

    [38]

    Chen Z, Liu M, Tang L, Lv J, Hu X 2010 Chin. Phys. Lett. 27 025205

    [39]

    Chen Z, Liu M, Hong L, Zhou Q, Cheng L, Hu X 2011 Phys. Plasmas 18 013505

    [40]

    Chen Z, Ye Q, Xia G, Hong L, Hu Y, Zheng X, Li P, Zhou Q, Hu X, Liu M 2013 Phys. Plasmas 20 033502

    [41]

    Chen Z, Liu M, Xia G, Huang Y 2012 IEEE Trans. Plasma Sci. 40 2861

    [42]

    Chen Z, Xia G, Zhou Q, Hu Y, Zheng X, Zhen Z, Hong L, Li P, Huang Y 2012 Rev. Sci. Instrum. 83 084701

    [43]

    Dong T, Ye K, Liu W 2012 Acta. Phys. Sin. 61 145202 (in Chinese) [董太源, 叶坤涛, 刘维清 2012 物理学报 61 145202]

  • [1]

    Sugai H, Ghanashev I, Nagatsu M 1998 Plasma Sources Sci. Technol. 7 192

    [2]

    Nagatsu M, Naito K, Ogino A, Nanko S 2006 Plasma Sources Sci. Technol. 15 37

    [3]

    Tian C, Nozawa T, Ishibasi K, Kameyama H, Morimoto T 2006 J. Vac. Sci. Technol. A 24 1421

    [4]

    Yasaka Y, Ishii N, Yamamoto T, Ando M, Takahashi M 2004 IEEE Trans. Plasma Sci. 32 101

    [5]

    Nagatsu M, Terashita F, Nonaka H, Xu L, Nagata T, Koide Y 2005 Appl. Phys. Lett. 86 211502

    [6]

    Xu L, Terashita F, Nonaka H, Ogino A, Nagata T, Koide Y, Nanko S, Kurawaki I, Nagatsu M 2006 J. Phys. D: Appl. Phys. 39 148

    [7]

    Kousaka H, Ono K, Umehara N, Sawada I, Ishibashi K 2006 Thin Solid Films 506-507 503

    [8]

    Wu T, Kou C 2005 Phys. Plasmas 12 103504

    [9]

    Xu X, Liu F, Zhou Q, Liang B, Liang Y, Liang R 2008 Appl. Phys. Lett. 92 011501

    [10]

    Wu C, Zhan R, Wen X, Huang W 2001 IEEE Trans. Plasma Sci. 29 13

    [11]

    Liang Y, Ou Q, Liang B, Liang R 2008 Chin. Phys. Lett. 25 1761

    [12]

    Liang B, Ou Q, Liang Y, Liang R 2007 Chin. Phys. 16 3732

    [13]

    Hu Y, Chen Z, Liu M, Hong L, Li P, Zheng X, Xia G, Hu X 2011 Chin. Phys. Lett. 28 115201

    [14]

    Chen Z, Liu M, Zhou Q, Hu Y, Yang A, Zhu L, Hu X 2011 Chin. Phys. Lett. 28 045201

    [15]

    Liu M, Sugai H, Hu X, Ishijima T, Jiang Z, Li B, Dan M 2006 Acta. Phys. Sin. 55 5905 (in Chinese) [刘明海, 菅井秀郎, 胡希伟, 石岛芳夫, 江中和, 李斌, 但敏 2006 物理学报 55 5905]

    [16]

    Chen Z, Liu M, Zhou P, Chen W, Lan C, Hu X 2008 Plasma Sci. Technol. 10 655

    [17]

    Chen Z, Liu M, Tang L, Hu P, Hu X 2009 J. Appl. Phys. 106 013314

    [18]

    Chen Z, Liu M, Tang L, Lv J, Wen Y, Hu X2009 J. Appl. Phys. 106 063304

    [19]

    Chen Z, Liu M, Lan C, Chen W, Luo Z, Hu X 2008 Chin. Phys. Lett. 25 4333

    [20]

    Chen Q, Aoyagi P H, Katsurai M 1999 IEEE Trans. Plasma Sci. 27 164

    [21]

    Toba T, Katsurai M 2002 IEEE Trans. Plasma Sci. 30 2095

    [22]

    Okamura Y, Yamamoto Y, Fujita K, Miyoshi T, Teramoto K, Kawaguchi H, Kagami S, Furukawa M 2007 J. Vac. Sci. Technol. A 25 816

    [23]

    Nagatsu M, Naito K, Ogino A, Ninomiya K, Nanko S 2005 Appl. Phys. Lett. 87 161501

    [24]

    Tatarova E, Dias F M, Henriques J, Ferreira C M 2005 IEEE Trans. Plasma Sci. 33 866

    [25]

    Henriques J, Tatarova E, Dias F M 2008 J. Appl. Phys. 103 103304

    [26]

    Chen Z, Liu M, Lan C, Chen W, Tang L, Luo Z, Yan B, Lv J, Hu X 2009 Chin. Phys. B 18 3484

    [27]

    Lan C, Lan C, Hu X, Chen Z, Liu M 2009 Chin. Phys. B 18 2412

    [28]

    Lan C, Chen Z, Liu M, Jiang Z, Hu X 2009 Plasma Sci. Technol. 11 66

    [29]

    Lan C, Hu X, Liu M 2011 Acta. Phys. Sin. 60 025205 (in Chinese) [蓝朝晖, 胡希伟, 刘明海 2011 物理学报 60 025205]

    [30]

    Jin X, Yang Z, Huang T 2007 Phys. Plasmas 14 113505

    [31]

    Jin X, Huang T, Liao P, Yang Z 2009 Acta. Phys. Sin. 58 5526 (in Chinese) [金晓林, 黄桃, 廖平, 杨中海 2009 物理学报 58 5526]

    [32]

    Liu M, Hu X, Yu G, Wu Q, Pan Y 2002 Plasma Sources Sci. Technol. 11 260

    [33]

    Boeuf J P, Chaudhury B, Zhu G 2010 Phys. Rev. Lett. 104 015002

    [34]

    Zhu G, Boeuf J P, Li J 2012 Acta. Phys. Sin. 61 235202 (in Chinese) [朱国强, Jean-Pierre Boeuf, 李进贤 2012 物理学报 61 235202]

    [35]

    Zhou Q, Dong Z, Chen J 2011 Acta. Phys. Sin. 60 125202 (in Chinese) [周前红, 董志伟, 陈京元 2011 物理学报 60 125202]

    [36]

    Yang J, Shi F, Yang T, Meng Z 2010 Acta. Phys. Sin. 59 8701 (in Chinese) [杨涓, 石峰, 杨铁链, 孟志强 2010 物理学报 59 8701]

    [37]

    Chen M, Mao G, Xia G, Yang J, Sun A 2012 Propulsion Technology 33 150 (in Chinese) [陈茂林, 毛根旺, 夏广庆, 杨涓, 孙安邦 2012 推进技术 33 150]

    [38]

    Chen Z, Liu M, Tang L, Lv J, Hu X 2010 Chin. Phys. Lett. 27 025205

    [39]

    Chen Z, Liu M, Hong L, Zhou Q, Cheng L, Hu X 2011 Phys. Plasmas 18 013505

    [40]

    Chen Z, Ye Q, Xia G, Hong L, Hu Y, Zheng X, Li P, Zhou Q, Hu X, Liu M 2013 Phys. Plasmas 20 033502

    [41]

    Chen Z, Liu M, Xia G, Huang Y 2012 IEEE Trans. Plasma Sci. 40 2861

    [42]

    Chen Z, Xia G, Zhou Q, Hu Y, Zheng X, Zhen Z, Hong L, Li P, Huang Y 2012 Rev. Sci. Instrum. 83 084701

    [43]

    Dong T, Ye K, Liu W 2012 Acta. Phys. Sin. 61 145202 (in Chinese) [董太源, 叶坤涛, 刘维清 2012 物理学报 61 145202]

  • [1] Chen Zhao-Quan, Yin Zhi-Xiang, Chen Ming-Gong, Liu Ming-Hai, Xu Gong-Lin, Hu Ye-Lin, Xia Guang-Qing, Song Xiao, Jia Xiao-Fen, Hu Xi-Wei. Particle-in-cell simulation on surface-wave discharge process influenced by gas pressure and negative-biased voltage along ion sheath layer. Acta Physica Sinica, 2014, 63(9): 095205. doi: 10.7498/aps.63.095205
    [2] Liu Ming-Hai, Hu Xi-Wei, Jiang Zhong-He, Li Bin, Dan Min, Sugai H, Ishijima T. Properties of large-area surface wave plasma. Acta Physica Sinica, 2006, 55(11): 5905-5908. doi: 10.7498/aps.55.5905
    [3] Zhang Wen-Jun, Gao Long, Wei Hong, Xu Hong-Xing. Modulation of propagating surface plasmons. Acta Physica Sinica, 2019, 68(14): 147302. doi: 10.7498/aps.68.20190802
    [4] Li Pan. Research progress of plasmonic nanofocusing. Acta Physica Sinica, 2019, 68(14): 146201. doi: 10.7498/aps.68.20190564
    [5] Zhang Bao-Bao, Zhang Cheng-Yun, Zhang Zheng-Long, Zheng Hai-Rong. Surface plasmon mediated chemical reaction. Acta Physica Sinica, 2019, 68(14): 147102. doi: 10.7498/aps.68.20190345
    [6] Scatterings and wavefront manipulations of surface plasmons. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20200614
    [7] Wu Han, Wu Jing-Yu, Chen Zhuo. Strong coupling between metasurface based Tamm plasmon microcavity and exciton. Acta Physica Sinica, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [8] Wang Wen-Hui,  Zhang Nao. Energy loss of surface plasmon polaritons on Ag nanowire waveguide. Acta Physica Sinica, 2018, 67(24): 247302. doi: 10.7498/aps.67.20182085
    [9] Wu Li-Xiang, Li Xin, Yang Yuan-Jie. Generation of surface plasmon vortices based on double-layer Archimedes spirals. Acta Physica Sinica, 2019, 68(23): 234201. doi: 10.7498/aps.68.20190747
    [10] Yu Hua-Kang, Liu Bo-Dong, Wu Wan-Ling, Li Zhi-Yuan. Surface plasmaons enhanced light-matter interactions. Acta Physica Sinica, 2019, 68(14): 149101. doi: 10.7498/aps.68.20190337
    [11] Liu Zi, Zhang Heng, Wu Hao, Liu Chang. Enhancement of photoluminescence from zinc oxide by aluminum nanoparticle surface plasmon. Acta Physica Sinica, 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
    [12] Han Qing-Yao, Tang Jun-Chao, Zhang Chao, Wang Chuan, Ma Hai-Qiang, Yu Li, Jiao Rong-Zhen. The effects of local density of states on surface plasmon polaritons. Acta Physica Sinica, 2012, 61(13): 135202. doi: 10.7498/aps.61.135202
    [13] Sheng Shi-Wei, Li Kang, Kong Fan-Min, Yue Qing-Yang, Zhuang Hua-Wei, Zhao Jia. Tooth-shaped plasmonic filter based on graphene nanoribbon. Acta Physica Sinica, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [14] Li Jia-Ming, Tang Peng, Wang Jia-Jian, Huang Tao, Lin Feng, Fang Zhe-Yu, Zhu Xing. Focusing surface plasmon polaritons in archimedes' spiral nanostructure. Acta Physica Sinica, 2015, 64(19): 194201. doi: 10.7498/aps.64.194201
    [15] Li Ming, Chen Yang, Guo Guang-Can, Ren Xi-Feng. Recent progress of the application of surface plasmon polariton in quantum information processing. Acta Physica Sinica, 2017, 66(14): 144202. doi: 10.7498/aps.66.144202
    [16] Jiang Mei-Ling, Zheng Li-Heng, Chi Cheng, Zhu Xing, Fang Zhe-Yu. Research progress of plasmonic cathodoluminesecence characterization. Acta Physica Sinica, 2017, 66(14): 144201. doi: 10.7498/aps.66.144201
    [17] Chu Pei-Xin, Zhang Yu-Bin, Chen Jun-Xue. Surface plasmon induced transparency in coupled microcavities assisted by slits. Acta Physica Sinica, 2020, 69(13): 134205. doi: 10.7498/aps.69.20200369
    [18] Deng Hong-Mei, Huang Lei, Li Jing, Lu Ye, Li Chuan-Qi. Tunable unidirectional surface plasmon polariton coupler utilizing graphene-based asymmetric nanoantenna pairs. Acta Physica Sinica, 2017, 66(14): 145201. doi: 10.7498/aps.66.145201
    [19] Zhou Qiang, Lin Shu-Pei, Zhang Pu, Chen Xue-Wen. Quasinormal mode analysis of extremely localized optical field in body-of-revolution plasmonic structures. Acta Physica Sinica, 2019, 68(14): 147104. doi: 10.7498/aps.68.20190434
    [20] Wang Dong, Xu Jun, Chen Yi-Hang. Broadband absorption caused by coupling of epsilon-near-zero mode with plasmon mode. Acta Physica Sinica, 2018, 67(20): 207301. doi: 10.7498/aps.67.20181106
  • Citation:
Metrics
  • Abstract views:  1109
  • PDF Downloads:  521
  • Cited By: 0
Publishing process
  • Received Date:  08 March 2013
  • Accepted Date:  28 May 2013
  • Published Online:  05 October 2013

PIC/MCC simulation of the ionization process of SWP influenced by gas pressure and SPP

  • 1. College of Electrical & Information Engineering, Anhui University of Science and Technology, Huainan 232001, China;
  • 2. State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China;
  • 3. State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
Fund Project:  Project supported by the NationalNatural Science Foundation of China (Grant No. 11105002), the Open-End Fund of State Key Laboratory of Structural Analysis for Industrial Equipment (Grant No. GZ1215), the Natural Science Foundation for University in Anhui Province, China (Grant No. KJ2013A106), the Education Project of Creation and Innovation for College Students in China (Grant No. 201210361058), and the Doctoral Scientific Research Fund of AUST.

Abstract: A surface-wave plasma (SWP) source based on surface plasmon polariton (SPP) has fine performances such as high density, low temperature, high production, and so on. It is applied in electronic device micro or nano processing, material modification, etc. Because the ionization of SWP heated by SPP is difficult to describe by theoretical analysis and experimental measurement, the ionization process of producing uniform stable SWP source is not yet well understood. The method in this paper is a numerical simulation of SWP discharges. The electromagnetic energy coupling mechanism of ionization process, influenced by gas pressure, which is studied by combining particle-in-cell (PIC) simulation of reciprocity between plasma and electromagnetic wave with Monte Carlo Collide (MCC) method in merit of dealing with particle collision. Simulated results suggest that the efficient production of SWP is induced by locally enhanced electric field of SPP, and the gas pressure influences the ionization process of SWP by altering the appearance time of wave-mode resonant conversion. Results of this paper show the ionization process of SWP discharge maintained by SPP, and further provide some advices for designing the parameter optimization of next generation meter-scale SWP source.

Reference (43)

Catalog

    /

    返回文章
    返回