Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Phase in Rydberg electromagnetically induced transparency

Yan Dong Wang Bin-Bin Bai Wen-Jie Liu Bing Du Xiu-Guo Ren Chun-Nian

Citation:

Phase in Rydberg electromagnetically induced transparency

Yan Dong, Wang Bin-Bin, Bai Wen-Jie, Liu Bing, Du Xiu-Guo, Ren Chun-Nian
PDF
HTML
Get Citation
  • Transmission properties of a weak probe field traveling through a sample of interacting cold 87Rb atoms driven into the three-level ladder configuration, which is a typical Rydberg electromagnetically induced transparency (EIT) system, are investigated. Rydberg atoms are considered to be a perfect platform in the research fields of quantum optics and quantum information processing due to some exaggerated properties of Rydberg atoms with high principal quantum number, especially, the dipole-dipole interaction between Rydberg atoms leads to the so-called dipole blockade effect accommodating at most one Rydberg excitation within a mesoscopic volume. The dipole blockade effect may be mapped onto the spectrum of EIT, and the EIT exhibits the cooperative optical nonlinearity which is usually characterized by two indicators, i.e., the probe intensity and the photonic correlation. The cooperative optical nonlinearity is also found here in the phase of transmission spectrum, and the phase can be regarded as the third indicator of nonlinearity in Rydberg EIT. However, there are tremendous differences between the phase and probe transmission (photonic correlation) though they both originate from the conditional polarization. Specifically, the phase is not sensitive to neither the incident probe intensity nor the initial photonic correlation at the resonant probe frequency under the condition of the Autler-Townes (AT) splitting where two other indicators exhibit significant cooperative nonlinearity. The nonlinearity in phase spectrum occurs only in the regime between the resonant probe frequency and the AT splitting and especially is remarkable at the frequency where the probe field is classical. Finally, influence of the principal quantum number and the atomic density on the transmitted phase are examined. In the nonlinear regime, the absolute value of the phase becomes smaller and smaller as the principal quantum number and the atomic density are raised. This indicates that the nonlinearity is strengthened by increasing them. The probe phase provides an attractive supplement to study in depth the cooperative optical nonlinearity in Rydberg EIT and offers us the considerable flexibility to manipulate the propagation and evolution of a quantum light field.
      Corresponding author: Yan Dong, ydbest@126.com
    • Funds: Project supported by the National Nature Science Foundation of China (Grant Nos. 11204019, 11874004) and the “Spring Sunshine” Plan Foundation of Ministry of Education of China (Grant No. Z2017030).
    [1]

    Harris S E, Field J E, Imamoglu A 1990 Phys. Rev. Lett. 64 1107Google Scholar

    [2]

    Harris S E 1997 Physics Today 50 36

    [3]

    Fleichhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633Google Scholar

    [4]

    Kasapi A, Jain M, Yin G Y, Harris S E 1995 Phys. Rev. Lett. 74 2447Google Scholar

    [5]

    Hau L V, Harris S E, Dutton Z, Behroozi C H 1999 Nature 397 594Google Scholar

    [6]

    Kash M M, Sautenkov V A, Zibrov A S, Hollberg L, Welch G R, Lukin M D, Rostovtsev Y, Fry E S, Scully M O 1999 Phys. Rev. Lett. 82 5229Google Scholar

    [7]

    Lukin M D 2003 Rev. Mod. Phys. 75 457Google Scholar

    [8]

    Fleichhauer M, Lukin M D 2000 Phys. Rev. Lett. 84 5094Google Scholar

    [9]

    Simon C, Afzelius M, Appel J, de la Giroday A B, Dewhurst S J, Gisin N, Hu C Y, Jelezko F, Kröll S, Müller J H, Nunn J, Polzik E S, Rarity J G, de Riedmatten H, Rosenfeld W, Shields A J, Sköld N, Stevenson R M, Thew R, Walmsley I A, Weber M C, Weinfurter H, Wrachtrup J, Young R J 2010 Eur. Phys. J. D. 58 1Google Scholar

    [10]

    Eisaman M D, Andre A, Massou M, Fleichhauer M, Zibrov A S, Lukin M D 2005 Nature 438 837Google Scholar

    [11]

    Chanelière T, Matsukevich D N, Jenkins S D, Lan S Y, Kennedy T A B, Kuzmich A 2005 Nature 438 833Google Scholar

    [12]

    De Araujo L E E 2010 Opt. Lett. 35 977Google Scholar

    [13]

    Artoni M, La Rocca G C 2006 Phys. Rev. Lett. 96 073905Google Scholar

    [14]

    He Q Y, Xue Y, Artoni M, La Rocca G C, Xu J H, Gao J Y 2006 Phys. Rev. B 73 195124Google Scholar

    [15]

    Schmidt H, Ram R J 2000 App. Phys. Lett. 76 3173Google Scholar

    [16]

    Wu J H, La Rocca G C, Artoni M 2008 Phys. Rev. B 77 113106Google Scholar

    [17]

    Friedler I, Petrosyan D, Fleischhauer M, Kurizki G 2005 Phys. Rev. A 72 043803Google Scholar

    [18]

    Weatherill K J, Pritchard J D, Abel R P, Bason M G, Mohapatra A K, Adams C S 2008 J. Phys. B: At. Mol. Opt. Phys. 41 201002Google Scholar

    [19]

    Walker T G 2012 Nature 488 39Google Scholar

    [20]

    Müller M M, Kölle A, Löw R, Pfau T, Calarco T, Montangero S 2013 Phys. Rev. A 87 053412Google Scholar

    [21]

    Peyronel T, Firstenberg O, Liang Q Y, Hofferberth S, Gorshkov A V, Pohl T, Lukin M D, Vuletic V 2012 Nature 488 57Google Scholar

    [22]

    Gorniaczyk H, Tresp C, Schmidt J, Fedder H, Hofferberth S 2014 Phys. Rev. Lett. 113 053601Google Scholar

    [23]

    Chen W, Beck K M, Bücker R, Gullans M, Lukin M D, Tanji-Suzuki H, Vuletić V 2013 Science 341 768Google Scholar

    [24]

    Baur S, Tiarks D, Rempe G, Dürr S 2014 Phys. Rev. Lett. 112 073901Google Scholar

    [25]

    Paredes-Barato D, Adams C S 2014 Phys. Rev. Lett. 112 040501Google Scholar

    [26]

    Pritchard J D, Maxwell D, Gauguet A, Weatherill K J, Jones M P A, Adams C S 2010 Phys. Rev. Lett. 105 193603Google Scholar

    [27]

    Sevinçli S, Henkel N, Ates C, Pohl T 2011 Phys. Rev. Lett. 107 153001Google Scholar

    [28]

    Petrosyan D, Otterbach J, Fleischhauer M 2011 Phys. Rev. Lett. 107 213601Google Scholar

    [29]

    Yan D, Liu Y M, Bao Q Q, Fu C B, Wu J H 2012 Phys. Rev. A 86 023828Google Scholar

    [30]

    Yan D, Cui C L, Liu Y M, Song L J, Wu J H 2013 Phys. Rev. A 87 023827Google Scholar

    [31]

    Liu Y M, Yan D, Tian X D, Cui C L, Wu J H 2014 Phys. Rev. A 89 033839Google Scholar

    [32]

    Liu Y M, Tian X D, Yan D, Zhang Y, Cui C L, Wu J H 2015 Phys. Rev. A 91 043802Google Scholar

    [33]

    Liu Y M, Tian X D, Wang X, Yan D, Wu J H 2016 Opt. Lett. 408 41

    [34]

    Singer K, Stanojevic J, Weidemuller M, Cote R 2005 J. Phys. B: At. Mol. Opt. Phys. 38 S295Google Scholar

  • 图 1  (a)量子探测场$\scriptstyle{\hat \varOmega _{\rm{p}}}$在控制场${\varOmega _{\rm{c}}}$相干作用下的一维冷原子系综中传播, 原子系综可以看作是由独立的超级原子构成的; (b)左侧为具有vdW 相互作用的三能级原子结构图; 右侧为等价的无相互作用超级原子能级结构图

    Figure 1.  (a) Under the control of a classical field $ {\varOmega _{\rm{c}}}$, a quantum probe field $\scriptstyle{\hat \varOmega _{\rm{p}}}$ propagates in a one-dimensional cold atomic ensemble of non-interacting superatoms. (b) Left, level structure of the three-level interacting cold atoms described by a vdW potential; right, an equivalent energy level structure of a non-interacting superatom.

    图 2  (a)探测场透射率${I_{\rm{p}}}(L)/{I_{\rm{p}}}(0)$, (b)二阶关联函数$g_{\rm{p}}^{(2)}(L)/g_{\rm{p}}^{{\rm{(2)}}}(0)$, (c)探测场相位${\phi _{\rm{p}}}(L)/{\text{π}}$作为探测失谐${\varDelta _{\rm{p}}}/(2{\text{π}})$的函数. 黑色实线, 蓝色折线以及红色点线分别对应入射探测场拉比频率${\varOmega _{\rm{p}}}\left( 0 \right)/(2{\text{π}}) = 0.01$, 0.3 MHz和0.6 MHz的情况. 单光子失谐${\varDelta _{\rm{c}}} = 0$, 控制场拉比频率${\varOmega _{\rm{c}}}/(2{\text{π}}) = 2.5\;{\rm{MHz}}$, 其他参数见正文描述

    Figure 2.  (a) The transmitted probe intensity ${I_{\rm{p}}}(L)/{I_{\rm{p}}}(0)$, (b) the second-order correlation function $g_{\rm{p}}^{(2)}(L)/g_{\rm{p}}^{{\rm{(2)}}}(0)$, (c) probe phase ${\phi _{\rm{p}}}(L)/{\text{π}}$ as a function of the probe detuning ${\varDelta _{\rm{p}}}/(2{\text{π}})$. The black solid, blue dashed and red dotted curves are corresponding to incident probe Rabi frequencies ${\varOmega _{\rm{p}}}\left( 0 \right)/(2{\text{π}}) = 0.01$, $0.3\;{\rm{MHz}}$ and $0.6\;{\rm{MHz}}$, respectively. The single-photon detuning ${\varDelta _{\rm{c}}} = 0$ and the Rabi frequency of control field ${\varOmega _{\rm{c}}}/(2{\text{π}}) = 2.5\;{\rm{MHz}}$. Other parameters are described in the text.

    图 3  (a)探测场透射率${I_{\rm{p}}}(L)/{I_{\rm{p}}}(0)$, (b)二阶关联函数$g_{\rm{p}}^{(2)}(L)/g_{\rm{p}}^{{\rm{(2)}}}(0)$, (c)探测场相位${\phi _{\rm{p}}}(L)/{\text{π}}$作为探测失谐${\varDelta _{\rm{p}}}/(2{\text{π}})$和入射探测场拉比频率${\varOmega _{\rm{p}}}\left( 0 \right)/(2{\text{π}})$的函数. 其他参数同图2

    Figure 3.  (a) The transmitted probe intensity ${I_{\rm{p}}}(L)/{I_{\rm{p}}}(0)$, (b) the second-order correlation function $g_{\rm{p}}^{(2)}(L)/g_{\rm{p}}^{{\rm{(2)}}}(0)$, (c) the probe phase ${\phi _{\rm{p}}}(L)/{\text{π}}$ as a function of the probe detuning ${\varDelta _{\rm{p}}}/(2{\text{π}})$ and theRabi frequency of the incident probe field ${\varOmega _{\rm{p}}}\left( 0 \right)/(2{\text{π}})$. Other parameters are the same as in Fig. 2.

    图 4  (a)探测场透射率${I_{\rm{p}}}(L)/{I_{\rm{p}}}(0)$, (b)二阶关联函数$g_{\rm{p}}^{(2)}(L)/g_{\rm{p}}^{{\rm{(2)}}}(0)$, (c)探测场相位${\phi _{\rm{p}}}(L)/{\text{π}}$作为探测失谐${\varDelta _{\rm{p}}}/(2{\text{π}})$和初始二阶关联函数$g_{\rm{p}}^{\left( {\rm{2}} \right)}\left( 0 \right)$的函数. 入射探测场拉比频率${\varOmega _{\rm{p}}}\left( 0 \right)/(2{\text{π}}) = 0.3\;{\rm{MHz}}$, 其他参数同图2

    Figure 4.  (a) The transmitted probe intensity ${I_{\rm{p}}}(L)/{I_{\rm{p}}}(0)$, (b) the second-order correlation function $g_{\rm{p}}^{{\rm{(2)}}}(L)/g_{\rm{p}}^{{\rm{(2)}}}(0)$, (c) probe phase $ {\phi _{\rm{p}}}(L)/{\text{π}} $ as a function of the probe detuning ${\varDelta _{\rm{p}}}/(2{\text{π}})$ and the initial second-order correlation function $g_{\rm{p}}^{\left( 2 \right)}\left( 0 \right)$. The Rabi frequency of the incident probe field ${\varOmega _{\rm{p}}}\left( 0 \right)/(2{\text{π}}) = 0.3\;{\rm{MHz}}$ and other parameters are the same as in Fig. 2.

    图 5  探测场相位${\phi _{\rm{p}}}\left( L \right)/{\text{π}}$作为入射探测场拉比频率${\varOmega _{\rm{p}}}\left( 0 \right)/(2{\text{π}})$和初始二阶关联函数$g_{\rm{p}}^{\left( 2 \right)}\left( 0 \right)$的函数 (a)探测失谐${\varDelta _{\rm{p}}} = 1.4\;{\rm{MHz}}$; (b)探测失谐${\varDelta _{\rm{p}}} = $$ - 1.4\;{\rm{MHz}}$. 其他参数同图2

    Figure 5.  Probe phase ${\phi _{\rm{p}}}\left( L \right)/{\text{π}}$ as a function of the Rabi frequency of the incident probe field ${\varOmega _{\rm{p}}}\left( 0 \right)/(2{\text{π}})$ and initial second-order correlation function $g_{\rm{p}}^{\left( 2 \right)}\left( 0 \right)$: (a) Probe detuning ${\varDelta _{\rm{p}}} = 1.4\;{\rm{MHz}}$; (b) probe detuning ${\varDelta _{\rm{p}}} = $$- 1.4\;{\rm{MHz}}$. Other parameters are the same as in Fig. 2.

    图 6  探测场相位${\phi _{\rm{p}}}\left( L \right)/{\text{π}}$作为(a)主量子数$n$和(b)原子密度$\rho $的函数. 入射探测场拉比频率${\varOmega _{\rm{p}}}\left( 0 \right)/$$(2{\text{π}}) = 0.3\;{\rm{MHz}}$, 初始二阶关联函数$g_{\rm{p}}^{\left( {\rm{2}} \right)}\left( 0 \right) = 1$. 其他参数同图2

    Figure 6.  Probe phase ${\phi _{\rm{p}}}\left( L \right)/{\text{π}}$ as a function of (a)the principal quantum number $n$ and (b) the atomic density $\rho $. The incident probe intensity ${\varOmega _{\rm{p}}}\left( 0 \right)/(2{\text{π}}) = 0.3\;{\rm{MHz}}$ and the initial second-order correlation function $g_{\rm{p}}^{\left( {\rm{2}} \right)}\left( 0 \right) = 1$. Other parameters are the same as in Fig. 2.

  • [1]

    Harris S E, Field J E, Imamoglu A 1990 Phys. Rev. Lett. 64 1107Google Scholar

    [2]

    Harris S E 1997 Physics Today 50 36

    [3]

    Fleichhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633Google Scholar

    [4]

    Kasapi A, Jain M, Yin G Y, Harris S E 1995 Phys. Rev. Lett. 74 2447Google Scholar

    [5]

    Hau L V, Harris S E, Dutton Z, Behroozi C H 1999 Nature 397 594Google Scholar

    [6]

    Kash M M, Sautenkov V A, Zibrov A S, Hollberg L, Welch G R, Lukin M D, Rostovtsev Y, Fry E S, Scully M O 1999 Phys. Rev. Lett. 82 5229Google Scholar

    [7]

    Lukin M D 2003 Rev. Mod. Phys. 75 457Google Scholar

    [8]

    Fleichhauer M, Lukin M D 2000 Phys. Rev. Lett. 84 5094Google Scholar

    [9]

    Simon C, Afzelius M, Appel J, de la Giroday A B, Dewhurst S J, Gisin N, Hu C Y, Jelezko F, Kröll S, Müller J H, Nunn J, Polzik E S, Rarity J G, de Riedmatten H, Rosenfeld W, Shields A J, Sköld N, Stevenson R M, Thew R, Walmsley I A, Weber M C, Weinfurter H, Wrachtrup J, Young R J 2010 Eur. Phys. J. D. 58 1Google Scholar

    [10]

    Eisaman M D, Andre A, Massou M, Fleichhauer M, Zibrov A S, Lukin M D 2005 Nature 438 837Google Scholar

    [11]

    Chanelière T, Matsukevich D N, Jenkins S D, Lan S Y, Kennedy T A B, Kuzmich A 2005 Nature 438 833Google Scholar

    [12]

    De Araujo L E E 2010 Opt. Lett. 35 977Google Scholar

    [13]

    Artoni M, La Rocca G C 2006 Phys. Rev. Lett. 96 073905Google Scholar

    [14]

    He Q Y, Xue Y, Artoni M, La Rocca G C, Xu J H, Gao J Y 2006 Phys. Rev. B 73 195124Google Scholar

    [15]

    Schmidt H, Ram R J 2000 App. Phys. Lett. 76 3173Google Scholar

    [16]

    Wu J H, La Rocca G C, Artoni M 2008 Phys. Rev. B 77 113106Google Scholar

    [17]

    Friedler I, Petrosyan D, Fleischhauer M, Kurizki G 2005 Phys. Rev. A 72 043803Google Scholar

    [18]

    Weatherill K J, Pritchard J D, Abel R P, Bason M G, Mohapatra A K, Adams C S 2008 J. Phys. B: At. Mol. Opt. Phys. 41 201002Google Scholar

    [19]

    Walker T G 2012 Nature 488 39Google Scholar

    [20]

    Müller M M, Kölle A, Löw R, Pfau T, Calarco T, Montangero S 2013 Phys. Rev. A 87 053412Google Scholar

    [21]

    Peyronel T, Firstenberg O, Liang Q Y, Hofferberth S, Gorshkov A V, Pohl T, Lukin M D, Vuletic V 2012 Nature 488 57Google Scholar

    [22]

    Gorniaczyk H, Tresp C, Schmidt J, Fedder H, Hofferberth S 2014 Phys. Rev. Lett. 113 053601Google Scholar

    [23]

    Chen W, Beck K M, Bücker R, Gullans M, Lukin M D, Tanji-Suzuki H, Vuletić V 2013 Science 341 768Google Scholar

    [24]

    Baur S, Tiarks D, Rempe G, Dürr S 2014 Phys. Rev. Lett. 112 073901Google Scholar

    [25]

    Paredes-Barato D, Adams C S 2014 Phys. Rev. Lett. 112 040501Google Scholar

    [26]

    Pritchard J D, Maxwell D, Gauguet A, Weatherill K J, Jones M P A, Adams C S 2010 Phys. Rev. Lett. 105 193603Google Scholar

    [27]

    Sevinçli S, Henkel N, Ates C, Pohl T 2011 Phys. Rev. Lett. 107 153001Google Scholar

    [28]

    Petrosyan D, Otterbach J, Fleischhauer M 2011 Phys. Rev. Lett. 107 213601Google Scholar

    [29]

    Yan D, Liu Y M, Bao Q Q, Fu C B, Wu J H 2012 Phys. Rev. A 86 023828Google Scholar

    [30]

    Yan D, Cui C L, Liu Y M, Song L J, Wu J H 2013 Phys. Rev. A 87 023827Google Scholar

    [31]

    Liu Y M, Yan D, Tian X D, Cui C L, Wu J H 2014 Phys. Rev. A 89 033839Google Scholar

    [32]

    Liu Y M, Tian X D, Yan D, Zhang Y, Cui C L, Wu J H 2015 Phys. Rev. A 91 043802Google Scholar

    [33]

    Liu Y M, Tian X D, Wang X, Yan D, Wu J H 2016 Opt. Lett. 408 41

    [34]

    Singer K, Stanojevic J, Weidemuller M, Cote R 2005 J. Phys. B: At. Mol. Opt. Phys. 38 S295Google Scholar

  • [1] Liu Zhi-Hui, Liu Xiao-Na, He Jun, Liu Yao, Su Nan, Cai Ting, Du Yi-Jie, Wang Jie-Ying, Pei Dong-Liang, Wang Jun-Min. Tune-out wavelengths of Rydberg atoms. Acta Physica Sinica, 2024, 73(13): 130701. doi: 10.7498/aps.73.20240397
    [2] Xia Gang, Zhang Ya-Peng, Tang Jing-Wen, Li Chun-Yan, Wu Chun-Wang, Zhang Jie, Zhou Yan-Li. Metastable dynamics of Rydberg atomic system under electromagnetically induced transparency. Acta Physica Sinica, 2024, 73(10): 104203. doi: 10.7498/aps.73.20240233
    [3] Wang Xin, Ren Fei-Fan, Han Song, Han Hai-Yan, Yan Dong. Perfect optomechanically induced transparency and slow light in an Rydberg atom-assisted optomechanical system. Acta Physica Sinica, 2023, 72(9): 094203. doi: 10.7498/aps.72.20222264
    [4] Zhou Fei, Jia Feng-Dong, Liu Xiu-Bin, Zhang Jian, Xie Feng, Zhong Zhi-Ping. Measurement of microwave electric field based on electromagnetically induced transparency by using cold Rydberg atoms. Acta Physica Sinica, 2023, 72(4): 045204. doi: 10.7498/aps.72.20222059
    [5] Bai Jian-Nan, Han Song, Chen Jian-Di, Han Hai-Yan, Yan Dong. Correlated collective excitation and quantum entanglement between two Rydberg superatoms in steady state. Acta Physica Sinica, 2023, 72(12): 124202. doi: 10.7498/aps.72.20222030
    [6] Wu Feng-Chuan, Lin Yi, Wu Bo, Fu Yun-Qi. Response characteristics of radio frequency pulse of Rydberg atoms. Acta Physica Sinica, 2022, 71(20): 207402. doi: 10.7498/aps.71.20220972
    [7] Bai Wen-Jie, Yan Dong, Han Hai-Yan, Hua Shuo, Gu Kai-Hui. Correlated dynamics of three-body Rydberg superatoms. Acta Physica Sinica, 2022, 71(1): 014202. doi: 10.7498/aps.71.20211284
    [8] Gao Jie, Hang Chao. Deflection and manipulation of weak optical solitons by non-Hermitian electromagnetically induced gratings in Rydberg atoms. Acta Physica Sinica, 2022, 71(13): 133202. doi: 10.7498/aps.71.20220456
    [9] Pei Li-Ya, Zheng Shi-Yang, Niu Jin-Yan. Λ-type electromagnetically induced transparency and absorption by controlling atomic coherence. Acta Physica Sinica, 2022, 71(22): 224201. doi: 10.7498/aps.71.20220950
    [10] Ji Yan-Qiang, Wang Jie, Liu Ying-Li, Zhang Da-Wei, Xiao Rui-Jie, Dong Li, Xiu Xiao-Ming. Fast generation of three-atom singlet state with Rydberg superatom. Acta Physica Sinica, 2021, 70(12): 120301. doi: 10.7498/aps.70.20201841
    [11] Zhao Jia-Dong, Zhang Hao, Yang Wen-Guang, Zhao Jing-Hua, Jing Ming-Yong, Zhang Lin-Jie. Deceleration of optical pulses based on electromagnetically induced transparency of Rydberg atoms. Acta Physica Sinica, 2021, 70(10): 103201. doi: 10.7498/aps.70.20210102
    [12] Jin Zhao, Li Rui, Gong Wei-Jiang, Qi Yang, Zhang Shou, Su Shi-Lei. Implementation of the Rydberg double anti-blockade regime and the quantum logic gate based on resonant dipole-dipole interactions. Acta Physica Sinica, 2021, 70(13): 134202. doi: 10.7498/aps.70.20210059
    [13] Gao Xiao-Ping, Liang Jing-Rui, Liu Tang-Kun, Li Hong, Liu Ji-Bing. Manipulation of transmission properties of a ladder-four-level Rydberg atomic system. Acta Physica Sinica, 2021, 70(11): 113201. doi: 10.7498/aps.70.20202077
    [14] Zhang Qin-Rong, Wang Bin-Bin, Zhang Meng-Long, Yan Dong. Two-body entanglement in a dilute gas of Rydberg atoms. Acta Physica Sinica, 2018, 67(3): 034202. doi: 10.7498/aps.67.20172052
    [15] Yang Zhi-Wei, Jiao Yue-Chun, Han Xiao-Xuan, Zhao Jian-Ming, Jia Suo-Tang. Electromagnetically induced transparency of a cesium Rydberg atom in weak radio-frequency field. Acta Physica Sinica, 2017, 66(9): 093202. doi: 10.7498/aps.66.093202
    [16] Yang Zhi-Wei, Jiao Yue-Chun, Han Xiao-Xuan, Zhao Jian-Ming, Jia Suo-Tang. Electromagnetically induced transparency of Rydberg atoms in modulated laser fields. Acta Physica Sinica, 2016, 65(10): 103201. doi: 10.7498/aps.65.103201
    [17] Bai Jin-Hai, Lu Xiao-Gang, Miao Xing-Xu, Pei Li-Ya, Wang Meng, Gao Yan-Lei, Wang Ru-Quan, Wu Ling-An, Fu Pan-Ming, Zuo Zhan-Chun. Analysis on the absorption curve asymmetry of electromagnetically induced transparency in Rb87 cold atoms. Acta Physica Sinica, 2015, 64(3): 034206. doi: 10.7498/aps.64.034206
    [18] Wang Meng, Bai Jin-Hai, Pei Li-Ya, Lu Xiao-Gang, Gao Yan-Lei, Wang Ru-Quan, Wu Ling-An, Yang Shi-Ping, Pang Zhao-Guang, Fu Pan-Ming, Zuo Zhan-Chun. Electromagnetically induced transparency in a near-resonance coupling field. Acta Physica Sinica, 2015, 64(15): 154208. doi: 10.7498/aps.64.154208
    [19] Qiu Tian-Hui, Yang Guo-Jian. Electromagnetically induced grating in a Λ-type three-level atomic system modulated by a microwave field. Acta Physica Sinica, 2012, 61(1): 014205. doi: 10.7498/aps.61.014205
    [20] Liu Zheng-Dong, Wu Qiang. Electromagnetically induced transparency in a four-level atomic system driven by three coupled fields. Acta Physica Sinica, 2004, 53(9): 2970-2973. doi: 10.7498/aps.53.2970
Metrics
  • Abstract views:  9563
  • PDF Downloads:  155
  • Cited By: 0
Publishing process
  • Received Date:  31 October 2018
  • Accepted Date:  14 January 2019
  • Available Online:  01 April 2019
  • Published Online:  20 April 2019

/

返回文章
返回